我在一次面试中被问到这个问题。它们都是O(nlogn),但大多数人使用快速排序而不是归并排序。为什么呢?
当前回答
That's hard to say.The worst of MergeSort is n(log2n)-n+1,which is accurate if n equals 2^k(I have already proved this).And for any n,it's between (n lg n - n + 1) and (n lg n + n + O(lg n)).But for quickSort,its best is nlog2n(also n equals 2^k).If you divide Mergesort by quickSort,it equals one when n is infinite.So it's as if the worst case of MergeSort is better than the best case of QuickSort,why do we use quicksort?But remember,MergeSort is not in place,it require 2n memeroy space.And MergeSort also need to do many array copies,which we don't include in the analysis of algorithm.In a word,MergeSort is really faseter than quicksort in theroy,but in reality you need to consider memeory space,the cost of array copy,merger is slower than quick sort.I once made an experiment where I was given 1000000 digits in java by Random class,and it took 2610ms by mergesort,1370ms by quicksort.
其他回答
快速排序具有更好的平均情况复杂度,但在某些应用中它是错误的选择。快速排序容易受到拒绝服务攻击。如果攻击者可以选择要排序的输入,他可以很容易地构造一个时间复杂度为o(n^2)的最坏情况的集合。
归并排序的平均情况复杂性和最坏情况复杂性是相同的,因此不会遇到相同的问题。归并排序的这一特性也使它成为实时系统的最佳选择——确切地说,因为没有导致它运行得非常非常慢的病理情况。
由于这些原因,我更喜欢归并排序,而不是快速排序。
我想补充的是,到目前为止提到的三种算法(归并排序,快速排序和堆排序)只有归并排序是稳定的。也就是说,对于那些具有相同键的值,顺序不会改变。在某些情况下,这是可取的。
但是,说实话,在实际情况下,大多数人只需要良好的平均性能和快速排序…快速=)
所有排序算法都有其起伏。有关排序算法的概述,请参阅维基百科的文章。
快速排序并不比归并排序好。对于O(n²)(很少发生的最坏情况),快速排序可能比归并排序的O(nlogn)慢得多。快速排序的开销更小,所以对于小n和速度较慢的计算机,它会更好。但是今天的计算机是如此之快,以至于合并排序的额外开销可以忽略不计,并且在大多数情况下,非常慢的快速排序的风险远远超过合并排序的微不足道的开销。
此外,归并排序将具有相同键的项按原始顺序保留,这是一个有用的属性。
这是采访中经常被问到的一个问题,尽管归并排序在最坏情况下性能更好,但快速排序被认为比归并排序更好,特别是对于大输入。以下是快速排序更好的原因:
1-辅助空间:快速排序是一种就地排序算法。就地排序意味着执行排序不需要额外的存储空间。另一方面,归并排序需要一个临时数组来归并已排序的数组,因此它并不到位。
2-最坏情况:快速排序O(n^2)的最坏情况可以通过使用随机化快速排序来避免。通过选择正确的枢轴,可以很容易地避免这种情况。通过选择合适的枢轴元来获得平均情况下的行为,从而提高了算法的性能,达到了与归并排序一样的效率。
3-引用的局部性:快速排序特别展示了良好的缓存局部性,这使得它在许多情况下比归并排序更快,比如在虚拟内存环境中。
4-尾递归:快速排序是尾递归,而归并排序不是。尾递归函数是一种函数,其中递归调用是函数执行的最后一件事。尾递归函数被认为比非尾递归函数更好,因为尾递归可以被编译器优化。
同时考虑时间和空间的复杂性。 归并排序: 时间复杂度:O(nlogn), 空间复杂度:O(nlogn)
快速排序: 时间复杂度:O(n²), 空间复杂度:O(n)
现在,他们各自在一个场景中获胜。 但是,使用随机枢轴,您几乎总是可以将快速排序的时间复杂度降低到O(nlogn)。
因此,在许多应用中,快速排序是首选,而不是归并排序。