我在一次面试中被问到这个问题。它们都是O(nlogn),但大多数人使用快速排序而不是归并排序。为什么呢?
当前回答
快速排序有O(n2)最差情况运行时和O(nlogn)平均情况运行时。然而,在许多情况下,它优于归并排序,因为许多因素影响算法的运行时,并且,当把它们放在一起时,快速排序胜出。
In particular, the often-quoted runtime of sorting algorithms refers to the number of comparisons or the number of swaps necessary to perform to sort the data. This is indeed a good measure of performance, especially since it’s independent of the underlying hardware design. However, other things – such as locality of reference (i.e. do we read lots of elements which are probably in cache?) – also play an important role on current hardware. Quicksort in particular requires little additional space and exhibits good cache locality, and this makes it faster than merge sort in many cases.
此外,通过使用适当的枢轴选择,几乎完全避免快速排序的最坏情况运行时间O(n2)是非常容易的——比如随机选择它(这是一个很好的策略)。
在实践中,许多现代的快速排序实现(特别是libstdc++的std::sort)实际上是introsort,其理论上的最差情况是O(nlogn),与归并排序相同。它通过限制递归深度,并在超过logn时切换到不同的算法(heapsort)来实现这一点。
其他回答
亩! 快速排序并不比归并排序更好,它非常适合于不同类型的应用。
归并排序是值得考虑的,如果速度是本质,糟糕的最差情况性能不能容忍,并且有额外的空间可用
你说他们«他们都是O(nlogn)[…]»。这是错误的。«快速排序使用大约n^2/2比较在最坏的情况下。
然而,根据我的经验,最重要的属性是在使用带有命令式范式的编程语言进行排序时,可以轻松实现顺序访问。
1 Sedgewick,算法
快速排序是一种就地排序算法,因此它更适合于数组。另一方面,归并排序需要额外的O(N)存储空间,更适合于链表。
与数组不同,在喜欢列表中,我们可以在中间插入O(1)空间和O(1)时间的项,因此归并排序中的归并操作可以在不需要任何额外空间的情况下实现。但是,为数组分配和取消分配额外空间会对归并排序的运行时间产生不利影响。归并排序也有利于链表,因为数据是按顺序访问的,没有太多的随机内存访问。
另一方面,快速排序需要大量的随机内存访问,而使用数组,我们可以直接访问内存,而不需要像链表那样进行任何遍历。同样,快速排序用于数组时具有良好的引用局部性,因为数组连续存储在内存中。
尽管这两种排序算法的平均复杂度都是O(NlogN),但通常人们在执行普通任务时使用数组进行存储,因此快速排序应该是首选算法。
编辑:我刚刚发现归并排序最差/最好/平均情况总是nlogn,但快速排序可以从n2(最坏的情况下,元素已经排序)到nlogn(平均/最佳情况下,pivot总是将数组分为两半)。
快速排序具有更好的平均情况复杂度,但在某些应用中它是错误的选择。快速排序容易受到拒绝服务攻击。如果攻击者可以选择要排序的输入,他可以很容易地构造一个时间复杂度为o(n^2)的最坏情况的集合。
归并排序的平均情况复杂性和最坏情况复杂性是相同的,因此不会遇到相同的问题。归并排序的这一特性也使它成为实时系统的最佳选择——确切地说,因为没有导致它运行得非常非常慢的病理情况。
由于这些原因,我更喜欢归并排序,而不是快速排序。
快速排序是最坏情况O(n²),然而,平均情况始终执行归并排序。每个算法都是O(nlogn),但你需要记住,当谈论大O时,我们忽略了较低的复杂度因素。当涉及到常数因子时,快速排序比归并排序有显著的改进。
归并排序也需要O(2n)内存,而快速排序可以就地完成(只需要O(n))。这是快速排序通常比归并排序更受欢迎的另一个原因。
额外信息:
快速排序的最坏情况发生在枢轴选择不佳时。考虑下面的例子:
[5, 4, 3, 2, 1]
If the pivot is chosen as the smallest or largest number in the group then quick sort will run in O(n^2). The probability of choosing the element that is in the largest or smallest 25% of the list is 0.5. That gives the algorithm a 0.5 chance of being a good pivot. If we employ a typical pivot choosing algorithm (say choosing a random element), we have 0.5 chance of choosing a good pivot for every choice of a pivot. For collections of a large size the probability of always choosing a poor pivot is 0.5 * n. Based on this probability quick sort is efficient for the average (and typical) case.
快速排序并不比归并排序好。对于O(n²)(很少发生的最坏情况),快速排序可能比归并排序的O(nlogn)慢得多。快速排序的开销更小,所以对于小n和速度较慢的计算机,它会更好。但是今天的计算机是如此之快,以至于合并排序的额外开销可以忽略不计,并且在大多数情况下,非常慢的快速排序的风险远远超过合并排序的微不足道的开销。
此外,归并排序将具有相同键的项按原始顺序保留,这是一个有用的属性。