我在一次面试中被问到这个问题。它们都是O(nlogn),但大多数人使用快速排序而不是归并排序。为什么呢?


当前回答

快速排序并不比归并排序好。对于O(n²)(很少发生的最坏情况),快速排序可能比归并排序的O(nlogn)慢得多。快速排序的开销更小,所以对于小n和速度较慢的计算机,它会更好。但是今天的计算机是如此之快,以至于合并排序的额外开销可以忽略不计,并且在大多数情况下,非常慢的快速排序的风险远远超过合并排序的微不足道的开销。

此外,归并排序将具有相同键的项按原始顺序保留,这是一个有用的属性。

其他回答

在所有条件相同的情况下,我希望大多数人使用最方便的方法,这往往是qsort(3)。除此之外,快速排序在数组上非常快,就像归并排序是列表的常用选择一样。

我想知道的是为什么基数排序和桶排序这么少见。它们是O(n)至少在链表上是这样的它所需要的只是将键转换为序数的方法。(字符串和浮动工作得很好。)

我认为原因与计算机科学的教学方式有关。我甚至不得不向我的讲师演示算法分析,它确实有可能比O(nlog (n))更快地排序。(他证明了比较排序不能比O(nlog (n))快,这是正确的)

在其他新闻中,浮点数可以按整数排序,但之后必须将负数反转。

编辑: 实际上,这里有一种更糟糕的将浮点数作为整数排序的方法:http://www.stereopsis.com/radix.html。注意,不管你实际使用什么排序算法,比特翻转技巧都可以使用……

同时考虑时间和空间的复杂性。 归并排序: 时间复杂度:O(nlogn), 空间复杂度:O(nlogn)

快速排序: 时间复杂度:O(n²), 空间复杂度:O(n)

现在,他们各自在一个场景中获胜。 但是,使用随机枢轴,您几乎总是可以将快速排序的时间复杂度降低到O(nlogn)。

因此,在许多应用中,快速排序是首选,而不是归并排序。

维基百科的解释是:

通常,快速排序在实践中比其他Θ(nlogn)算法要快得多,因为它的内部循环可以在大多数架构上有效地实现,并且在大多数现实数据中,可以做出设计选择,使需要二次时间的概率最小化。

快速排序

Mergesort

我认为归并排序(即Ω(n))所需要的存储量也存在快速排序实现所不具备的问题。在最坏的情况下,它们的算法时间是相同的,但归并排序需要更多的存储空间。

快速排序是最坏情况O(n²),然而,平均情况始终执行归并排序。每个算法都是O(nlogn),但你需要记住,当谈论大O时,我们忽略了较低的复杂度因素。当涉及到常数因子时,快速排序比归并排序有显著的改进。

归并排序也需要O(2n)内存,而快速排序可以就地完成(只需要O(n))。这是快速排序通常比归并排序更受欢迎的另一个原因。

额外信息:

快速排序的最坏情况发生在枢轴选择不佳时。考虑下面的例子:

[5, 4, 3, 2, 1]

If the pivot is chosen as the smallest or largest number in the group then quick sort will run in O(n^2). The probability of choosing the element that is in the largest or smallest 25% of the list is 0.5. That gives the algorithm a 0.5 chance of being a good pivot. If we employ a typical pivot choosing algorithm (say choosing a random element), we have 0.5 chance of choosing a good pivot for every choice of a pivot. For collections of a large size the probability of always choosing a poor pivot is 0.5 * n. Based on this probability quick sort is efficient for the average (and typical) case.

实际上,快速排序是O(n2)。它的平均情况运行时间是O(nlog(n)),但最坏情况是O(n2),这发生在在包含很少唯一项的列表上运行时。随机化花费O(n)。当然,这并没有改变最坏的情况,它只是防止恶意用户使您的排序花费很长时间。

快速排序更受欢迎,因为它:

(MergeSort需要额外的内存,与要排序的元素数量成线性关系)。 有一个小的隐藏常数。