我在一次面试中被问到这个问题。它们都是O(nlogn),但大多数人使用快速排序而不是归并排序。为什么呢?


当前回答

与归并排序不同,快速排序不使用辅助空间。而归并排序使用辅助空间O(n)。 归并排序的最坏情况时间复杂度是O(nlogn)而快速排序的最坏情况复杂度是O(n²)这发生在数组已经排序的时候。

其他回答

当我试验这两种排序算法时,通过计算递归调用的次数, 快速排序始终比归并排序具有更少的递归调用。 这是因为快速排序有枢轴,而在下一个递归调用中不包括枢轴。这样快速排序可以比归并排序更快地达到递归基本情况。

我想补充的是,到目前为止提到的三种算法(归并排序,快速排序和堆排序)只有归并排序是稳定的。也就是说,对于那些具有相同键的值,顺序不会改变。在某些情况下,这是可取的。

但是,说实话,在实际情况下,大多数人只需要良好的平均性能和快速排序…快速=)

所有排序算法都有其起伏。有关排序算法的概述,请参阅维基百科的文章。

虽然它们都在相同的复杂度类中,但这并不意味着它们都具有相同的运行时。快速排序通常比归并排序更快,因为它更容易编写紧凑的实现代码,它所做的操作也更快。这是因为快速排序通常更快,人们使用它而不是归并排序。

然而!我个人经常会使用归并排序或快速排序变体,当快速排序表现不佳时,它们会降级为归并排序。记住。快速排序平均只有O(n log n)最坏情况是O(n²)归并排序总是O(n log n).在实时性能或响应性是必须的情况下,你的输入数据可能来自恶意来源,你不应该使用简单的快速排序。

这是一个相当老的问题,但因为我最近处理了这两个问题,所以这里是我的2c:

归并排序平均需要~ N log N次比较。对于已经(几乎)排序过的排序数组,这可以达到1/ 2nlog N,因为在归并时,我们(几乎)总是选择“左边”的1/ 2n次,然后只复制右边1/ 2n个元素。此外,我可以推测,已经排序的输入使处理器的分支预测器发光,但猜测几乎所有的分支都正确,从而防止管道停顿。

快速排序平均需要~ 1.38 nlog N个比较。在比较方面,它不会从已经排序的数组中获得很大的好处(但是在交换方面,可能在CPU内部的分支预测方面,它会获得很大的好处)。

我在相当现代的处理器上的基准测试显示如下:

当比较函数是回调函数时(如qsort() libc实现),对于随机输入,快速排序比归并排序慢15%,对于已经排序的64位整数,快排序比归并排序慢30%。

另一方面,如果比较不是回调,我的经验是快速排序优于归并排序高达25%。

然而,如果你的(大)数组只有很少的唯一值,归并排序在任何情况下都开始超过快速排序。

因此,底线可能是:如果比较是昂贵的(例如,回调函数,比较字符串,比较结构的许多部分,主要是得到第二个,第三个,第四个“if”来产生差异)-很可能你会更好地使用归并排序。对于简单的任务,快速排序会更快。

之前所说的都是真的: -快速排序可以是N^2,但Sedgewick声称,一个好的随机实现有更多的机会,计算机执行排序被闪电击中比N^2 —归并排序需要占用额外空间

我想在现有的优秀答案中添加一些关于快速排序在偏离最佳情况时的表现以及这种情况的可能性的数学,我希望这将帮助人们更好地理解为什么O(n²)情况在更复杂的快速排序实现中不是真正的问题。

除了随机访问问题之外,还有两个主要因素会影响快速排序的性能,它们都与主元与正在排序的数据的比较有关。

1) A small number of keys in the data. A dataset of all the same value will sort in n^2 time on a vanilla 2-partition QuickSort because all of the values except the pivot location are placed on one side each time. Modern implementations address this by methods such as using a 3-partition sort. These methods execute on a dataset of all the same value in O(n) time. So using such an implementation means that an input with a small number of keys actually improves performance time and is no longer a concern.

2)极差的枢轴选择会导致最坏情况的性能。在理想的情况下,主元总是这样,50%的数据是小的,50%的数据是大的,这样在每次迭代中输入将被分成两半。这给了我们n次比较和交换,乘以log-2(n)次递归,时间为O(n*logn)。

非理想的枢轴选择对执行时间的影响有多大?

让我们考虑这样一种情况,其中始终选择主元,这样75%的数据都在主元的一边。它仍然是O(n*logn)但现在对数的底变成了1/0.75或1.33。改变基数时性能的关系始终是一个常数,用log(2)/log(newBase)表示。在这个例子中,这个常数是2.4。所以这种枢轴选择的时间是理想情况的2.4倍。

情况多快会恶化?

不是很快,直到主元选择(始终)非常糟糕:

一侧50%:(理想情况下) 75%在一边:2.4倍长 90%在一边:6.6倍长 95%在一边:13.5倍长 一边99%长69倍

当我们在一边接近100%时,执行的log部分接近n,整个执行渐近接近O(n²)。

In a naive implementation of QuickSort, cases such as a sorted array (for 1st element pivot) or a reverse-sorted array (for last element pivot) will reliably produce a worst-case O(n^2) execution time. Additionally, implementations with a predictable pivot selection can be subjected to DoS attack by data that is designed to produce worst case execution. Modern implementations avoid this by a variety of methods, such as randomizing the data before sort, choosing the median of 3 randomly chosen indexes, etc. With this randomization in the mix, we have 2 cases:

小数据集。最坏的情况是可能的但O(n²)不是灾难性的因为n足够小,所以n²也很小。 大数据集。最坏的情况在理论上是可能的,但在实践中并非如此。

我们看到糟糕表现的可能性有多大?

这种可能性微乎其微。让我们考虑5000个值:

我们假设的实现将使用3个随机选择的索引的中位数来选择一个主元。我们认为在25%-75%范围内的枢轴是“好的”,而在0%-25%或75%-100%范围内的枢轴是“坏的”。如果你使用3个随机索引的中位数来观察概率分布,每次递归都有11/16的机会最终得到一个好的主元。让我们做两个保守的(错误的)假设来简化数学:

好的枢轴总是精确地在25%/75%的分割和2.4*理想情况下运行。我们从来没有得到过理想的分割或者比25/75更好的分割。 糟糕的枢轴总是最坏的情况,基本上对解决方案没有任何贡献。

Our QuickSort implementation will stop at n=10 and switch to an insertion sort, so we require 22 25%/75% pivot partitions to break the 5,000 value input down that far. (10*1.333333^22 > 5000) Or, we require 4990 worst case pivots. Keep in mind that if we accumulate 22 good pivots at any point then the sort will complete, so worst case or anything near it requires extremely bad luck. If it took us 88 recursions to actually achieve the 22 good pivots required to sort down to n=10, that would be 4*2.4*ideal case or about 10 times the execution time of the ideal case. How likely is it that we would not achieve the required 22 good pivots after 88 recursions?

二项概率分布可以回答这个问题,答案是10^-18。(n是88,k是21,p是0.6875)你的用户在点击[排序]的1秒内被闪电击中的可能性大约是他们看到5000个项目排序比10*理想情况更糟糕的1000倍。随着数据集变大,这种可能性会越来越小。以下是一些数组大小以及它们运行时间超过10*理想值的相应机会:

640项数组:10^-13(需要在60次尝试中获得15个良好的枢轴点) 5000项数组:10^-18(需要在88次尝试中有22个良好的枢轴) 40000项的数组:10^-23(需要在116个中有29个好的枢轴)

记住,这是有两个保守的假设,比现实更糟糕。因此,实际性能更好,剩余概率的平衡更接近理想。

最后,正如其他人所提到的,如果递归堆栈太深,即使这些荒谬的不太可能的情况也可以通过切换到堆排序来消除。所以TLDR是,对于快速排序的良好实现,最坏的情况并不存在,因为它已经被设计出来,并且执行在O(n*logn)时间内完成。