我在一次面试中被问到这个问题。它们都是O(nlogn),但大多数人使用快速排序而不是归并排序。为什么呢?


当前回答

维基百科上关于快速排序的词条:

Quicksort also competes with mergesort, another recursive sort algorithm but with the benefit of worst-case Θ(nlogn) running time. Mergesort is a stable sort, unlike quicksort and heapsort, and can be easily adapted to operate on linked lists and very large lists stored on slow-to-access media such as disk storage or network attached storage. Although quicksort can be written to operate on linked lists, it will often suffer from poor pivot choices without random access. The main disadvantage of mergesort is that, when operating on arrays, it requires Θ(n) auxiliary space in the best case, whereas the variant of quicksort with in-place partitioning and tail recursion uses only Θ(logn) space. (Note that when operating on linked lists, mergesort only requires a small, constant amount of auxiliary storage.)

其他回答

当我试验这两种排序算法时,通过计算递归调用的次数, 快速排序始终比归并排序具有更少的递归调用。 这是因为快速排序有枢轴,而在下一个递归调用中不包括枢轴。这样快速排序可以比归并排序更快地达到递归基本情况。

在归并排序中,一般算法为:

对左子数组进行排序 对右子数组进行排序 合并两个已排序的子数组

在顶层,合并两个已排序的子数组涉及处理N个元素。

再往下一层,第3步的每次迭代都涉及处理N/2个元素,但您必须重复此过程两次。所以你仍然在处理2 * N/2 == N个元素。

再往下一层,你要合并4 * N/4 == N个元素,以此类推。递归堆栈中的每个深度都涉及合并相同数量的元素,涉及对该深度的所有调用。

考虑一下快速排序算法:

选择一个枢轴点 将枢轴点放置在数组中的正确位置,所有较小的元素放在左边,较大的元素放在右边 对左子数组进行排序 对右子数组排序

在顶层,你处理的是一个大小为n的数组,然后选择一个枢轴点,把它放在正确的位置,然后可以在算法的其余部分完全忽略它。

再往下一层,您将处理2个子数组,它们的组合大小为N-1(即减去之前的枢轴点)。为每个子数组选择一个枢轴点,总共有2个额外的枢轴点。

再往下一层,您将处理4个子数组,它们的组合大小为N-3,原因与上面相同。

然后N-7…然后c15…然后N-32…

递归堆栈的深度保持大致相同(logN)。使用归并排序,你总是在递归堆栈的每一层处理n个元素的归并。但是使用快速排序,你要处理的元素数量会随着你在堆栈中向下移动而减少。例如,如果你在递归堆栈中查看深度,你正在处理的元素数量是N - 2^((logN)/2)) == N -根号(N)。

声明:对于归并排序,因为每次都将数组分割为两个完全相等的块,所以递归深度正好是logN。在快速排序时,由于枢轴点不太可能恰好位于数组的中间,因此递归堆栈的深度可能略大于logN。我还没有做过数学计算,看看这个因素和上面描述的因素在算法复杂性中究竟扮演了多大的角色。

That's hard to say.The worst of MergeSort is n(log2n)-n+1,which is accurate if n equals 2^k(I have already proved this).And for any n,it's between (n lg n - n + 1) and (n lg n + n + O(lg n)).But for quickSort,its best is nlog2n(also n equals 2^k).If you divide Mergesort by quickSort,it equals one when n is infinite.So it's as if the worst case of MergeSort is better than the best case of QuickSort,why do we use quicksort?But remember,MergeSort is not in place,it require 2n memeroy space.And MergeSort also need to do many array copies,which we don't include in the analysis of algorithm.In a word,MergeSort is really faseter than quicksort in theroy,but in reality you need to consider memeory space,the cost of array copy,merger is slower than quick sort.I once made an experiment where I was given 1000000 digits in java by Random class,and it took 2610ms by mergesort,1370ms by quicksort.

实际上,快速排序是O(n2)。它的平均情况运行时间是O(nlog(n)),但最坏情况是O(n2),这发生在在包含很少唯一项的列表上运行时。随机化花费O(n)。当然,这并没有改变最坏的情况,它只是防止恶意用户使您的排序花费很长时间。

快速排序更受欢迎,因为它:

(MergeSort需要额外的内存,与要排序的元素数量成线性关系)。 有一个小的隐藏常数。

快速排序和合并排序的小增加。

它还可以依赖于排序项的类型。如果访问项、交换和比较不是简单的操作,就像比较平面内存中的整数一样,那么归并排序可能是更可取的算法。

例如,我们在远程服务器上使用网络协议对项目进行排序。

而且,在像“链表”这样的自定义容器中,也没有快速排序的好处。 1. 对链表进行归并排序,不需要额外的内存。 2. 快速排序中对元素的访问不是顺序的(在内存中)