我在一次面试中被问到这个问题。它们都是O(nlogn),但大多数人使用快速排序而不是归并排序。为什么呢?


当前回答

这是采访中经常被问到的一个问题,尽管归并排序在最坏情况下性能更好,但快速排序被认为比归并排序更好,特别是对于大输入。以下是快速排序更好的原因:

1-辅助空间:快速排序是一种就地排序算法。就地排序意味着执行排序不需要额外的存储空间。另一方面,归并排序需要一个临时数组来归并已排序的数组,因此它并不到位。

2-最坏情况:快速排序O(n^2)的最坏情况可以通过使用随机化快速排序来避免。通过选择正确的枢轴,可以很容易地避免这种情况。通过选择合适的枢轴元来获得平均情况下的行为,从而提高了算法的性能,达到了与归并排序一样的效率。

3-引用的局部性:快速排序特别展示了良好的缓存局部性,这使得它在许多情况下比归并排序更快,比如在虚拟内存环境中。

4-尾递归:快速排序是尾递归,而归并排序不是。尾递归函数是一种函数,其中递归调用是函数执行的最后一件事。尾递归函数被认为比非尾递归函数更好,因为尾递归可以被编译器优化。

其他回答

正如其他人所注意到的,快速排序的最坏情况是O(n²),而归并排序和堆排序则停留在O(nlogn)。然而,在平均情况下,这三个都是O(nlogn);所以它们在大多数情况下是可比较的。

平均而言,快速排序更好的地方在于,内循环意味着将多个值与单个值进行比较,而在其他两个循环中,每次比较时两个项都是不同的。换句话说,Quicksort的读取次数是其他两种算法的一半。在现代cpu上,访问时间在很大程度上决定了性能,因此快速排序最终成为一个很好的首选。

虽然它们都在相同的复杂度类中,但这并不意味着它们都具有相同的运行时。快速排序通常比归并排序更快,因为它更容易编写紧凑的实现代码,它所做的操作也更快。这是因为快速排序通常更快,人们使用它而不是归并排序。

然而!我个人经常会使用归并排序或快速排序变体,当快速排序表现不佳时,它们会降级为归并排序。记住。快速排序平均只有O(n log n)最坏情况是O(n²)归并排序总是O(n log n).在实时性能或响应性是必须的情况下,你的输入数据可能来自恶意来源,你不应该使用简单的快速排序。

这是一个相当老的问题,但因为我最近处理了这两个问题,所以这里是我的2c:

归并排序平均需要~ N log N次比较。对于已经(几乎)排序过的排序数组,这可以达到1/ 2nlog N,因为在归并时,我们(几乎)总是选择“左边”的1/ 2n次,然后只复制右边1/ 2n个元素。此外,我可以推测,已经排序的输入使处理器的分支预测器发光,但猜测几乎所有的分支都正确,从而防止管道停顿。

快速排序平均需要~ 1.38 nlog N个比较。在比较方面,它不会从已经排序的数组中获得很大的好处(但是在交换方面,可能在CPU内部的分支预测方面,它会获得很大的好处)。

我在相当现代的处理器上的基准测试显示如下:

当比较函数是回调函数时(如qsort() libc实现),对于随机输入,快速排序比归并排序慢15%,对于已经排序的64位整数,快排序比归并排序慢30%。

另一方面,如果比较不是回调,我的经验是快速排序优于归并排序高达25%。

然而,如果你的(大)数组只有很少的唯一值,归并排序在任何情况下都开始超过快速排序。

因此,底线可能是:如果比较是昂贵的(例如,回调函数,比较字符串,比较结构的许多部分,主要是得到第二个,第三个,第四个“if”来产生差异)-很可能你会更好地使用归并排序。对于简单的任务,快速排序会更快。

之前所说的都是真的: -快速排序可以是N^2,但Sedgewick声称,一个好的随机实现有更多的机会,计算机执行排序被闪电击中比N^2 —归并排序需要占用额外空间

实际上,快速排序是O(n2)。它的平均情况运行时间是O(nlog(n)),但最坏情况是O(n2),这发生在在包含很少唯一项的列表上运行时。随机化花费O(n)。当然,这并没有改变最坏的情况,它只是防止恶意用户使您的排序花费很长时间。

快速排序更受欢迎,因为它:

(MergeSort需要额外的内存,与要排序的元素数量成线性关系)。 有一个小的隐藏常数。

快速排序是在实践中最快的排序算法,但有一些病态的情况,可以使它的表现差到O(n2)。

堆排序保证在O(n*ln(n))中运行,并且只需要有限的额外存储空间。但是有许多真实世界的测试表明堆排序比快速排序平均要慢得多。