我在一次面试中被问到这个问题。它们都是O(nlogn),但大多数人使用快速排序而不是归并排序。为什么呢?
当前回答
在归并排序中,一般算法为:
对左子数组进行排序 对右子数组进行排序 合并两个已排序的子数组
在顶层,合并两个已排序的子数组涉及处理N个元素。
再往下一层,第3步的每次迭代都涉及处理N/2个元素,但您必须重复此过程两次。所以你仍然在处理2 * N/2 == N个元素。
再往下一层,你要合并4 * N/4 == N个元素,以此类推。递归堆栈中的每个深度都涉及合并相同数量的元素,涉及对该深度的所有调用。
考虑一下快速排序算法:
选择一个枢轴点 将枢轴点放置在数组中的正确位置,所有较小的元素放在左边,较大的元素放在右边 对左子数组进行排序 对右子数组排序
在顶层,你处理的是一个大小为n的数组,然后选择一个枢轴点,把它放在正确的位置,然后可以在算法的其余部分完全忽略它。
再往下一层,您将处理2个子数组,它们的组合大小为N-1(即减去之前的枢轴点)。为每个子数组选择一个枢轴点,总共有2个额外的枢轴点。
再往下一层,您将处理4个子数组,它们的组合大小为N-3,原因与上面相同。
然后N-7…然后c15…然后N-32…
递归堆栈的深度保持大致相同(logN)。使用归并排序,你总是在递归堆栈的每一层处理n个元素的归并。但是使用快速排序,你要处理的元素数量会随着你在堆栈中向下移动而减少。例如,如果你在递归堆栈中查看深度,你正在处理的元素数量是N - 2^((logN)/2)) == N -根号(N)。
声明:对于归并排序,因为每次都将数组分割为两个完全相等的块,所以递归深度正好是logN。在快速排序时,由于枢轴点不太可能恰好位于数组的中间,因此递归堆栈的深度可能略大于logN。我还没有做过数学计算,看看这个因素和上面描述的因素在算法复杂性中究竟扮演了多大的角色。
其他回答
正如许多人所注意到的,快速排序的平均情况性能要比归并排序快。但这只适用于假设按需访问任何内存段的时间为常数的情况。
在RAM中,这种假设通常不太坏(由于缓存的存在,这种假设并不总是正确的,但也不太坏)。然而,如果你的数据结构足够大,可以存储在磁盘上,那么快速排序就会因为磁盘平均每秒进行200次随机查找而被扼杀。但是,同样的磁盘在按顺序每秒读取或写入兆字节的数据方面没有任何问题。这正是归并排序所做的。
因此,如果数据必须在磁盘上排序,你真的,真的想使用归并排序的一些变体。(通常你快速排序子列表,然后开始将它们合并到某个大小阈值以上。)
Furthermore if you have to do anything with datasets of that size, think hard about how to avoid seeks to disk. For instance this is why it is standard advice that you drop indexes before doing large data loads in databases, and then rebuild the index later. Maintaining the index during the load means constantly seeking to disk. By contrast if you drop the indexes, then the database can rebuild the index by first sorting the information to be dealt with (using a mergesort of course!) and then loading it into a BTREE datastructure for the index. (BTREEs are naturally kept in order, so you can load one from a sorted dataset with few seeks to disk.)
在许多情况下,了解如何避免磁盘寻道使我将数据处理工作花费数小时而不是数天或数周。
实际上,快速排序是O(n2)。它的平均情况运行时间是O(nlog(n)),但最坏情况是O(n2),这发生在在包含很少唯一项的列表上运行时。随机化花费O(n)。当然,这并没有改变最坏的情况,它只是防止恶意用户使您的排序花费很长时间。
快速排序更受欢迎,因为它:
(MergeSort需要额外的内存,与要排序的元素数量成线性关系)。 有一个小的隐藏常数。
答案将略微倾向于快速排序w.r.t的变化带来的DualPivotQuickSort的基本值。它在JAVA 7中用于在JAVA .util. arrays中排序
It is proved that for the Dual-Pivot Quicksort the average number of
comparisons is 2*n*ln(n), the average number of swaps is 0.8*n*ln(n),
whereas classical Quicksort algorithm has 2*n*ln(n) and 1*n*ln(n)
respectively. Full mathematical proof see in attached proof.txt
and proof_add.txt files. Theoretical results are also confirmed
by experimental counting of the operations.
您可以在这里找到JAVA7实现- http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/7-b147/java/util/Arrays.java
关于DualPivotQuickSort的进一步精彩阅读- http://permalink.gmane.org/gmane.comp.java.openjdk.core-libs.devel/2628
与归并排序不同,快速排序不使用辅助空间。而归并排序使用辅助空间O(n)。 归并排序的最坏情况时间复杂度是O(nlogn)而快速排序的最坏情况复杂度是O(n²)这发生在数组已经排序的时候。
正如其他人所注意到的,快速排序的最坏情况是O(n²),而归并排序和堆排序则停留在O(nlogn)。然而,在平均情况下,这三个都是O(nlogn);所以它们在大多数情况下是可比较的。
平均而言,快速排序更好的地方在于,内循环意味着将多个值与单个值进行比较,而在其他两个循环中,每次比较时两个项都是不同的。换句话说,Quicksort的读取次数是其他两种算法的一半。在现代cpu上,访问时间在很大程度上决定了性能,因此快速排序最终成为一个很好的首选。