我无法理解这个,哪个更随机?

rand()

OR:

rand() * rand()

我发现这是一个真正的脑筋急转弯,你能帮我吗?


编辑:

直觉上,我知道数学上的答案是它们是同样随机的,但我不禁想,如果你在将两者相乘时“运行随机数算法”两次,你会创建比只做一次更随机的东西。


“随机”与“更随机”有点像问哪个零更为零。

在这种情况下,rand是PRNG,所以不是完全随机的。(事实上,如果种子是已知的,那是完全可以预测的)。将其乘以另一个值,使其不再随机。

真正的加密类型RNG实际上是随机的。通过任何类型的函数运行值都不能增加更多的熵,而且很可能会删除熵,使其不再随机。


两者都不是“更随机”的。

rand()基于伪随机种子生成一组可预测的数字(通常基于当前时间,该时间总是在变化)。将序列中的两个连续数字相乘,生成一个不同但同样可预测的数字序列。

关于这是否会减少冲突,答案是否定的。它实际上会增加冲突,这是因为在0<n<1的情况下,两个数字相乘的结果。结果将是一个较小的分数,导致结果偏向频谱的低端。

一些进一步的解释。在下文中,“不可预测”和“随机”是指某人根据先前的数字猜测下一个数字的能力,即预言。

给定生成以下值列表的种子x:

0.3, 0.6, 0.2, 0.4, 0.8, 0.1, 0.7, 0.3, ...

rand()将生成上述列表,rand(*rand)将生成:

0.18, 0.08, 0.08, 0.21, ...

这两种方法将始终为同一种子生成相同的数字列表,因此预言者同样可以预测。但是如果你看一下两个调用相乘的结果,你会发现它们都在0.3以下,尽管在原始序列中分布良好。由于两个分数相乘的影响,这些数字是有偏差的。由此产生的数字总是较小,因此更可能发生碰撞,尽管仍然无法预测。


只是一个澄清

尽管每当你试图发现伪随机变量或其乘法的随机性时,前面的答案都是正确的,但你应该知道,虽然random()通常是均匀分布的,但random(*random)却不是。

实例

这是通过伪随机变量模拟的均匀随机分布样本:

        BarChart[BinCounts[RandomReal[{0, 1}, 50000], 0.01]]

这是两个随机变量相乘后得到的分布:

        BarChart[BinCounts[Table[RandomReal[{0, 1}, 50000] * 
                                 RandomReal[{0, 1}, 50000], {50000}], 0.01]]

所以,两者都是“随机”的,但它们的分布是非常不同的。

另一个例子

当2*Random()均匀分布时:

        BarChart[BinCounts[2 * RandomReal[{0, 1}, 50000], 0.01]]

随机()+随机()不是!

        BarChart[BinCounts[Table[RandomReal[{0, 1}, 50000] + 
                                 RandomReal[{0, 1}, 50000], {50000}], 0.01]]

中心极限定理

中心极限定理指出,随着项的增加,Random()的和趋于正态分布。

只需四个术语即可获得:

BarChart[BinCounts[Table[RandomReal[{0, 1}, 50000] + RandomReal[{0, 1}, 50000] +
                   Table[RandomReal[{0, 1}, 50000] + RandomReal[{0, 1}, 50000],
                   {50000}],
         0.01]]  

在这里,通过将1、2、4、6、10和20个均匀分布的随机变量相加,可以看到从均匀分布到正态分布的道路:

Edit

几个学分

感谢Thomas Ahle在评论中指出,最后两张图片中显示的概率分布称为Irwin Hall分布

感谢Heike出色的撕裂功能


关于“随机性”的一些事情是反直觉的。

假设rand()的平面分布,下面将得到非平面分布:

高偏差:sqrt(rand(范围^2))中间偏差峰值:(rand(range)+rand(range))/2低:偏差:范围-sqrt(rand(范围^2))

有很多其他方法可以创建特定的偏置曲线。我对rand()*rand(()做了一个快速测试,它得到了一个非常非线性的分布。


大多数rand()实现都有一定的周期。也就是说,在大量的调用之后,序列会重复。rand()*rand(()的输出序列在一半时间内重复,因此在这个意义上它“不那么随机”。

此外,如果没有仔细的构造,对随机值执行算术往往会导致较少的随机性。上面的一张海报引用了“rand()+rand(()+rand()…”(例如,k倍),这实际上会倾向于rand(返回值范围的平均值的k倍。(这是一种随机行走,步数与平均值对称。)

具体来说,假设rand()函数返回[0,1)范围内的均匀分布随机实数。(是的,这个例子允许无限精度。这不会改变结果。)您没有选择特定的语言,不同的语言可能会做不同的事情,但以下分析适用于对rand()的任何非反常实现的修改。乘积rand()*rand(()也在[0,1)范围内,但不再均匀分布。事实上,乘积在区间[0,1/4)和区间[1/4,1)中的可能性一样大。更多的乘法将使结果进一步趋向于零。这使得结果更可预测。在广义上,更可预测的==更少的随机性。

几乎所有对均匀随机输入的操作序列都是非均匀随机的,从而提高了可预测性。小心的话,我们可以克服这一特性,但这样就可以更容易地在实际需要的范围内生成一个均匀分布的随机数,而不是在算术上浪费时间。


浮动随机数通常基于一种算法,该算法产生一个介于零和一定范围之间的整数。因此,通过使用rand()*rand((),您实际上是在说int_rand()*int_rand()/rand_max ^2-这意味着您排除了任何素数/rand_max^2。

这显著改变了随机分布。

rand()在大多数系统中都是均匀分布的,如果正确播种,很难预测。除非你有特殊的理由对其进行数学运算(例如,将分布成形为所需的曲线),否则使用该方法。


答案将是,这取决于,希望rand()*rand(()比rand)更随机,但如下所示:

两个答案都取决于你的值的位数在大多数情况下,你根据伪随机算法生成(它主要是一个数字生成器,依赖于你的计算机时钟,而不是那么随机)。让你的代码更可读(不要用这种咒语来召唤一些随机的巫毒神)。

好吧,如果你检查上面的任何一个,我建议你使用简单的“rand()”。因为你的代码会更可读(不会问自己为什么要写这个,时间……嗯……超过2秒),易于维护(如果你想用super_rand替换rand函数)。

如果你想要更好的随机性,我建议你从任何提供足够噪声的源(无线电静态)流式传输,然后一个简单的rand()就足够了。


当你对随机数的组合会发生什么感到怀疑时,你可以利用你在统计理论中学到的经验。

在OP的情况下,他想知道X*X=X^2的结果是什么,其中X是沿统一[0,1]分布的随机变量。我们将使用CDF技术,因为它只是一对一映射。

由于X~Uniform[0,1],其cdf为:fX(X)=1我们需要转换Y<-X^2,因此Y=X^2求逆x(y):sqrt(y)=x,这给出了x作为y的函数。接下来,求导数dx/dy:d/dy(sqrt(y))=1/(2sqrt(y)

Y的分布如下:fY(Y)=fX(x(Y))|dx/dy |=1/(2 sqrt(Y)

我们还没有完成,我们必须得到Y的域,因为0<=x<1,0<=x^2<1因此Y在范围[0,1)内。如果你想检查Y的pdf是否真的是pdf,请在域中集成它:从0到1集成1/(2 sqrt(Y)),实际上,它会弹出为1。此外,请注意所述函数的形状看起来像belisarious发布的内容。

至于X1+X2+…+Xn,(其中Xi ~一致[0,1]),我们可以求助于中心极限定理,它适用于存在矩的任何分布。这就是Z检验存在的原因。

用于确定生成的pdf的其他技术包括雅可比变换(这是cdf技术的广义版本)和MGF技术。

编辑:作为澄清,请注意,我所说的是结果转换的分布,而不是其随机性。这实际上是一个单独的讨论。我实际上得到的是(rand())^2。对于rand()*rand((),它要复杂得多,无论如何,这不会导致任何类型的均匀分布。


这里有一个简单的答案。考虑垄断。你掷两个六面骰子(对于喜欢游戏符号的人来说是2d6),然后求和。最常见的结果是7,因为有6种可能的方式可以掷7(1,6,5,3,44,3,5,2和6,1)。而2只能在1,1上滚动。很容易看出,掷1d6和掷1d12是不同的,即使范围相同(忽略1d12上可以得到1,点保持不变)。将结果相乘而不是相加会以类似的方式扭曲它们,因为大多数结果都位于范围的中间。如果您试图减少异常值,这是一个好方法,但它无助于使分布均匀。

(奇怪的是,它也会增加低掷。假设你的随机性从0开始,你会看到一个峰值在0,因为它会将其他掷骰变成0。考虑两个介于0和1(包括0和1)之间的随机数,然后相乘。如果其中一个结果为0,则无论其他结果如何,整个结果都将变为0。从中得到1的唯一方法是两卷都是1。在实践中,这可能无关紧要,但这会形成一个奇怪的图形。)


大多数这种分布发生是因为你必须限制或规范随机数。

我们将其标准化为全部为正,符合范围,甚至符合指定变量类型的内存大小限制。

换句话说,因为我们必须将随机调用限制在0和X之间(X是变量的大小限制),所以我们将有一组介于0和X的“随机”数。

现在,当你将随机数与另一个随机数相加时,总和将介于0和2X之间。。。这会使值偏离边缘点(当两个随机数在较大范围内时,将两个小数字相加和将两个大数字相加的概率非常小)。

想象一下这样一个例子,你有一个接近于零的数字,你将它与另一个随机数相加,它肯定会变大,远离0(这对于大数字是正确的,因为随机函数不可能两次返回两个大数字(接近于X的数字)。

现在,如果你用负数和正数设置随机方法(跨越零轴),情况将不再如此。

例如,假设RandomReal({-x,x},50000,.01),那么你会得到负数和正数的偶数分布,如果你将随机数相加,它们将保持其“随机性”。

现在我不确定Random()*Random(()从负到正的跨度会发生什么。。。这将是一个有趣的图表。。。但我现在得回去写代码了-P


你要寻找的概念是“熵”,即弦的无序程度位。从“最大熵”的概念来看,这个概念最容易理解。

具有最大熵的比特串的一个近似定义是,它不能用更短的比特串来精确表达(即,使用某种算法将较小的字符串扩展回原始字符串)。

最大熵与随机性的相关性源于以下事实:如果你“随机”选择一个数字,你几乎肯定会选择一个其比特串接近于具有最大熵,也就是说,它不能被压缩。这是我们对“随机”数特征的最好理解。

所以,如果你想从两个随机样本中产生一个随机数,它是随机,将两个位字符串连接在一起。实际上,你只是将样本填充到双倍长度单词的高半部分和低半部分。

从更实际的角度来看,如果你发现自己背负着一个蹩脚的rand(),它可以有时有助于将两个样本混合在一起——尽管,如果真的是盈亏平衡的话那个程序没用。


用更离散的数字来考虑可能会有所帮助。考虑一下要生成1到36之间的随机数,所以您决定最简单的方法是投掷两个公平的6面骰子。你得到了这个:

     1    2    3    4    5    6
  -----------------------------
1|   1    2    3    4    5    6
2|   2    4    6    8   10   12
3|   3    6    9   12   15   18
4|   4    8   12   16   20   24   
5|   5   10   15   20   25   30
6|   6   12   18   24   30   36

所以我们有36个数字,但并不是所有数字都得到了公平的表示,有些数字根本没有出现。靠近中心对角线(左下角到右上角)的数字将以最高频率出现。

描述骰子之间不公平分布的相同原则同样适用于0.0和1.0之间的浮点数。


我猜这两种方法都是随机的,尽管我的直觉会说rand()*rand(()不那么随机,因为它会产生更多的零。一旦一个rand()为0,总数即为0


强制性的xkcd。。。


正如其他人所说,简单的简短答案是:不,它不是更随机的,但它确实改变了分布。

假设你在玩骰子游戏。你有一些完全公平的随机骰子。如果在每次掷骰子之前,你先把两个骰子放在一个碗里,摇晃它,随机选一个骰子,然后掷那一个,掷骰子会更随机吗?显然,这不会有什么不同。如果两个骰子都给出了随机数字,那么从两个骰子中随机选择一个不会有任何区别。无论哪种方式,你都会得到一个介于1和6之间的随机数,在足够数量的卷上均匀分布。

我想在现实生活中,如果你怀疑骰子可能不公平,这样的程序可能会有用。例如,如果骰子稍微不平衡,那么一个骰子往往比1/6的时间更频繁地给出1,而另一个骰子则往往异常频繁地给出6,那么在这两个骰子之间随机选择将有助于掩盖偏差。(尽管在这种情况下,1和6仍然比2、3、4和5多。嗯,我想这取决于失衡的性质。)

随机性有很多定义。随机序列的一个定义是,它是由随机过程产生的一系列数字。根据这个定义,如果我掷一个公平骰子5次,得到数字2、4、3、2、5,那就是一个随机序列。如果我再掷同样的骰子5次,得到1,1,1、1,1和1,那么这也是一个随机序列。

一些海报指出,计算机上的随机函数不是真正随机的,而是伪随机的,如果你知道算法和种子,它们是完全可预测的。这是真的,但大多数时候是完全无关的。如果我洗牌,然后一次翻一张,这应该是一个随机系列。如果有人偷看卡片,结果将是完全可预测的,但根据大多数随机性的定义,这并不会减少随机性。如果该系列通过了随机性统计测试,我偷看卡片的事实不会改变这一事实。在实践中,如果我们在赌你猜下一张牌的能力,那么你偷看这些牌的事实是非常重要的。如果我们使用该系列来模拟访问我们网站的访客的菜单选择,以测试系统的性能,那么你偷看的事实将毫无区别。(只要您不修改程序以利用这些知识。)

EDIT

我认为我无法将我对蒙蒂霍尔问题的回应变成评论,所以我会更新我的答案。

对于那些没有阅读Belisarius链接的人来说,其要点是:游戏节目参赛者可以选择3个门。在一个人的背后是有价值的奖品,在其他人的背后是毫无价值的东西。他选了1号门。在揭示它是赢家还是输家之前,主持人打开3号门,揭示它是输家。然后,他给了参赛者切换到2号门的机会。参赛者是否应该这样做?

答案是,他应该改变,这违背了许多人的直觉。他最初选择的获胜者的概率是1/3,而另一个门获胜的概率是2/3。我和许多其他人的直觉一样,最初的直觉是,切换不会有任何好处,赔率刚刚改为50:50。

毕竟,假设有人在主持人打开丢失的门后打开了电视。那个人会看到剩下的两扇紧闭的门。假设他知道游戏的性质,他会说每个门都有1/2的机会隐藏奖品。观众的赔率是1/2:1/2,而参赛者的赔率却是1/3:2/3?

我真的不得不考虑这一点,才能让我的直觉成形。要了解它,请理解,当我们讨论像这样的问题中的概率时,我们的意思是,在给定可用信息的情况下,您分配的概率。对于将奖品放在1号门后面的工作人员来说,奖品在1号门后的概率为100%,而在其他两个门后面的概率为零。

机组成员的赔率与参赛者的赔率不同,因为他知道参赛者不知道的东西,即他把奖品放在了哪个门后面。同样,竞争对手的赔率与观众的赔率不同,因为他知道观众不知道的东西,即他最初选择了哪扇门。这并不是无关紧要的,因为主人选择打开哪扇门并不是随机的。他不会打开选手选的门,也不会打开隐藏奖品的门。如果这是同一扇门,他就有两个选择。如果它们是不同的门,那么只剩下一扇门。

那么我们如何得出1/3和2/3?当参赛者最初选择一扇门时,他有1/3的机会选择获胜者。我认为这是显而易见的。这意味着有2/3的机会,其他门中的一个获胜。如果东道主给他机会在不提供任何额外信息的情况下进行切换,那就不会有任何收获。同样,这应该是显而易见的。但有一种看法是,他有2/3的机会通过换人获胜。但他有两个选择。因此,每一个人只有2/3除以2=1/3的机会成为赢家,这并不比他最初的选择更好。当然,我们已经知道最终结果,这只是以不同的方式计算。

但现在主持人透露,这两个选择中的一个不是赢家。因此,对于他没有选择的门有2/3的机会获胜,他现在知道,2个备选方案中的1个不是。另一个可能是,也可能不是。因此,他不再有2/3除以2。他打开的门为零,关闭的门为2/3。


假设你有一个简单的硬币翻转问题,偶数被认为是正面,奇数被认为是反面。逻辑实现是:

rand() mod 2

在足够大的分布范围内,偶数的数量应该等于奇数的数量。

现在考虑一个小小的调整:

rand() * rand() mod 2

如果其中一个结果是偶数,那么整个结果应该是偶数。考虑4种可能的结果(偶*偶=偶,偶*奇=偶,奇*偶=偶数,奇*奇=奇数)。现在,在足够大的分布范围内,答案应该是75%的时间。

如果我是你,我敢打赌。

这条评论实际上更多的是解释为什么不应该基于您的方法实现自定义随机函数,而不是讨论随机性的数学财产。


根据您的计算机体系结构,相乘数字最终会得到更小的解决方案范围。

如果您的计算机显示16位数字,rand()将为0.1234567890123乘以第二个rand(),0.1234567890123,将得到0.0152415如果你把实验重复10^14次,你肯定会找到更少的解决方案。


这不是很明显,但rand()通常比rand(*rand)更随机。重要的是,对于大多数用途来说,这实际上不是很重要。

但首先,它们产生了不同的分布。如果这是你想要的,这不是问题,但这很重要。如果你需要一个特定的分布,那么忽略整个“哪个更随机”的问题。那么为什么rand()更随机呢?

rand()之所以更随机(假设它产生的是[0..1]范围内的浮点随机数,这是非常常见的)的核心是,当你将两个FP数与尾数中的大量信息相乘时,你会在结尾处丢失一些信息;IEEE双精度浮点中没有足够的位来保存从[0..1]中均匀随机选择的两个IEEE双精度浮点数中的所有信息,这些额外的信息位将丢失。当然,这无关紧要,因为你(可能)不会使用这些信息,但损失是真实的。您产生哪种分布(即,使用哪种操作进行组合)也并不重要。这些随机数中的每一个都有(最多)52位随机信息——这就是IEEE双精度的容量——如果你将两个或多个随机数合并为一个,那么你仍然只能拥有最多52位的随机信息。

大多数随机数的使用甚至没有使用随机源中实际可用的那么多随机性。得到一个好的PRNG,不要太担心它。(“好”的程度取决于你在用它做什么;你在做蒙特卡洛模拟或密码学时必须小心,否则你可能会使用标准PRNG,因为这通常要快得多。)


公认的答案很好,但有另一种方法可以回答你的问题。PachydermPuncher的答案已经采用了这种替代方法,我只是将其扩展一点。

思考信息理论最简单的方法是用最小的信息单位,一个比特。

在C标准库中,rand()返回一个0到rand_MAX范围内的整数,根据平台的不同,这个限制可能会有不同的定义。假设RAND_MAX恰好被定义为2^n-1,其中n是某个整数(这恰好是Microsoft实现中的情况,其中n为15)。然后我们可以说,一个好的实现将返回n位信息。

想象一下,rand()通过翻转硬币找到一位的值来构造随机数,然后重复直到它有一批15位。然后,这些位是独立的(任何一个位的值都不会影响同一批中其他位具有特定值的可能性)。因此,独立考虑的每个比特都像一个介于0和1之间的随机数,并且在该范围内“均匀分布”(可能是0和1)。

位的独立性确保了由一批位表示的数字也将在其范围内均匀分布。这很明显:如果有15位,允许的范围是0到2^15-1=32767。该范围内的每个数字都是唯一的位模式,例如:

010110101110010

并且如果比特是独立的,则没有模式比任何其他模式更可能发生。因此,该范围内所有可能的数字都有相同的可能性。反之亦然:如果rand()产生均匀分布的整数,那么这些数字是由独立的位组成的。

因此,将rand()看作是一条生产比特的生产线,它恰好以任意大小的批量提供比特。如果您不喜欢大小,请将批分成单独的位,然后按您喜欢的数量将它们放回一起(尽管如果您需要的特定范围不是2的幂,则需要缩小数字,目前最简单的方法是转换为浮点)。

回到你最初的建议,假设你想从15个批次到30个批次,向rand()请求第一个数字,将其移位15位,然后向其添加另一个rand(()。这是一种在不影响均匀分布的情况下组合对rand(的两个调用的方法。它的工作原理很简单,因为放置信息位的位置之间没有重叠。

这与通过乘以常数来“拉伸”rand()的范围非常不同。例如,如果你想将rand()的范围加倍,你可以乘以2,但现在你只能得到偶数,而不能得到奇数!这并不完全是一个平稳的分布,并且可能是一个严重的问题,具体取决于应用程序,例如,假设允许奇数/偶数下注的轮盘游戏。(从位的角度考虑,你可以直观地避免这个错误,因为你会意识到,乘以2等于将位向左移动一位(意义更大),然后用零填补空白。所以很明显,信息量是一样的——只是移动了一点。)

在浮点数应用程序中,数字范围中的这种差距是无法解决的,因为浮点数范围内在地具有根本无法表示的差距:在每两个可表示的浮点数之间的差距中存在无限数量的缺失实数!所以无论如何,我们必须学会与差距共处。

正如其他人所警告的那样,直觉在这一领域是有风险的,特别是因为数学家无法抵抗实数的诱惑,因为实数是一种充满了粗糙的无限和明显的悖论的可怕的令人困惑的东西。

但至少如果你从比特角度来看,你的直觉可能会让你走得更远。比特真的很容易——甚至计算机都能理解。


过度简化以说明一点。

假设随机函数只输出0或1。

random()是(0,1)之一,但random(()*random(是(0,0,0,1)之一

你可以清楚地看到,在第二种情况下,获得0的机会绝不等于获得1的机会。


当我第一次发布这个答案时,我希望尽可能简短,以便阅读它的人一眼就能理解random()和random(*random)之间的区别,但我无法阻止自己回答最初的广告垃圾问题:

哪个更随机?

如果random()、random(()*random()、random()+random(()、(random(+1)/2或任何其他不会导致固定结果的组合具有相同的熵源(或者在伪随机生成器的情况下具有相同的初始状态),那么答案将是它们具有相同的随机性(差异在于它们的分布)。我们可以看到的一个完美的例子是Craps游戏。你得到的数字将是随机的(1,6)+随机的(6,6),我们都知道得到7的几率最高,但这并不意味着掷两个骰子的结果比掷一个骰子的效果更随机。


好的,所以我会尝试添加一些值来补充其他答案,说你正在创建和使用一个随机数生成器。

随机数发生器是一种具有多种特性的设备(从非常普遍的意义上讲),可以根据需要进行修改。其中一些(来自我)是:

熵:如香农熵分布:统计分布(泊松、正态等)类型:数字的来源(算法、自然事件、组合等)和应用的算法。效率:执行的速度或复杂性。模式:周期、顺序、运行等。也许还有更多。。。

在这里的大多数答案中,分布是主要的关注点,但通过混合和匹配函数和参数,您可以创建生成随机数的新方法,这些随机数将具有不同的特征,其中一些特征乍一看可能不明显。


使用实现原始多项式的线性反馈移位寄存器(LFSR)。

结果将是一个2^n个伪随机数的序列,即在序列中没有重复,其中n是LFSR中的位数。。。。导致均匀分布。

http://en.wikipedia.org/wiki/Linear_feedback_shift_registerhttp://www.xilinx.com/support/documentation/application_notes/xapp052.pdf

使用基于计算机时钟的微信号的“随机”种子,或者可能是文件系统中一些不断变化的数据的md5结果的子集。

例如,32位LFSR将从给定种子开始按顺序生成2^32个唯一数字(没有2个相同)。序列将始终按照相同的顺序,但对于不同的种子,起点将不同(显然)。因此,如果种子之间可能重复的序列不是问题,那么这可能是一个不错的选择。

我已经使用128位LFSR在硬件模拟器中使用种子生成随机测试,该种子是对不断变化的系统数据的md5结果。


没有比这更随机的了。它要么是随机的,要么不是随机的。随机意味着“难以预测”。这并不意味着不确定性。如果random()是随机的,那么random(()和random(*random)都是随机的。就随机性而言,分布是无关紧要的。如果出现不均匀分布,则意味着某些值比其他值更有可能;它们仍然是不可预测的。由于涉及伪随机性,所以这些数字非常具有确定性。然而,在概率模型和模拟中,伪随机性通常是足够的。众所周知,使伪随机数生成器复杂化只会使其难以分析。不太可能提高随机性;它经常导致它无法通过统计测试。随机数的期望财产很重要:重复性和再现性、统计随机性、(通常)均匀分布和大周期是少数几个。关于随机数上的变换:正如有人所说,两个或多个均匀分布的和产生正态分布。这是加法中心极限定理。无论源分布如何,只要所有分布都是独立和相同的,它都适用。乘性中心极限定理表示两个或多个独立且一致分布的随机变量的乘积是对数正态的。其他人创建的图形看起来是指数型的,但实际上是对数正态的。因此random()*random(()是对数正态分布的(尽管它可能不是独立的,因为数字是从同一个流中提取的)。这在某些应用中可能是期望的。然而,通常最好生成一个随机数并将其转换为对数正态分布数。Random()*Random()可能很难分析。

欲了解更多信息,请访问www.performorama.org查阅我的书。这本书正在建设中,但相关材料已经存在。请注意,章节和章节编号可能会随时间而变化。第8章(概率论)——第8.3.1和8.3.3节,第10章(随机数)。


很容易证明两个随机数之和不一定是随机的。假设你有一个6面骰子。每个数字有1/6的机会出现。现在假设你有2个骰子,并将结果相加。这些总数的分布不是1/12。为什么?因为某些数字比其他数字更多。它们有多个分区。例如,数字2仅是1+1的和,但7可以由3+4、4+3或5+2等组成,因此它出现的机会更大。

因此,在本例中,对随机函数应用变换(在这种情况下为加法)不会使其更随机,或必然保持随机性。在上述骰子的情况下,分布偏向于7,因此随机性较小。


我们可以通过使用Kolmogorov复杂性如果数字序列不能被压缩,那么它是我们在这个长度上可以达到的最随机的。。。我知道这种测量更多的是理论上的选择。。。


正如其他人已经指出的那样,这个问题很难回答,因为我们每个人的大脑中都有自己的随机性图景。

这就是为什么,我强烈建议您花一些时间阅读本网站,以更好地了解随机性:

http://www.random.org/

回到真正的问题。在这个术语中没有或多或少的随机性:

两者都只是随机出现的!

在这两种情况下-仅rand()或rand(*rand)-情况相同:在几十亿个数字之后,序列将重复(!)。对观察者来说,它似乎是随机的,因为他不知道整个序列,但计算机没有真正的随机源,所以他也不能产生随机性。

天气是随机的吗?我们没有足够的传感器或知识来确定天气是否随机。


事实上,仔细想想rand()*rand(()比rand(。原因如下。

基本上,奇数和偶数的数量相同。假设0.04325是奇数,像0.388是偶数,0.4是偶数,0.15是奇数,

这意味着rand()有相等的机会成为偶数或奇数小数。

另一方面,rand()*rand(()的几率有点不同。让我们说:

double a = rand();
double b = rand();
double c = a * b;

a和b都有50%的几率是偶数或奇数。知道这一点

偶数*偶数=偶数偶数*奇数=偶数奇数*奇数=奇数奇数*偶数=偶数

这意味着c有75%的几率是偶数,而只有25%的几率是奇数,这使得rand()*rand(()的值比rand)更可预测,因此随机性更小。


假设rand()返回一个介于[0,1)之间的数字,很明显rand(*rand)将偏向于0。这是因为将x乘以[0,1)之间的数字将得到一个小于x的数字。下面是10000个随机数的分布:

google.charts.load(“current”,{packages:[“corechart”]});google.cacharts.setOnLoadCallback(drawChart);函数drawChart(){变量i;var randomNumbers=[];对于(i=0;i<10000;i++){randomNumbers.push(Math.rrandom()*Math.random());}var chart=新的google.visability.Histogram(document.getElementById(“chart-1”));var data=新的google.visibility.DataTable();data.addColumn(“数字”,“值”);randomNumbers.forEach(函数(randomNumber){data.addRow([randomNumber]);});chart.draw(数据{title:randomNumbers.length+“rand()*rand(值介于[0,1)之间”,图例:{位置:“无”}});}<script src=“https://www.gstatic.com/charts/loader.js“></script><div id=“chart-1”style=“height:500px”>正在生成图表</分区>

如果rand()返回[x,y]之间的整数,则得到以下分布。注意奇数与偶数的数量:

google.charts.load(“current”,{packages:[“corechart”]});google.cacharts.setOnLoadCallback(drawChart);document.querySelector(“#绘制图表”).addEventListener(“单击”,绘制图表);函数randomInt(最小值,最大值){return Math.floor(Math.random()*(max-min+1))+min;}函数drawChart(){var min=编号(document.querySelector(“#rand min”).value);var max=编号(document.querySelector(“#rand max”).value);如果(最小值>=最大值){回来}变量i;var randomNumbers=[];对于(i=0;i<10000;i++){randomNumbers.push(randomInt(最小,最大)*randomInt(最小,最小));}var chart=新的google.visability.Histogram(document.getElementById(“chart-1”));var data=新的google.visibility.DataTable();data.addColumn(“数字”,“值”);randomNumbers.forEach(函数(randomNumber){data.addRow([randomNumber]);});chart.draw(数据{title:randomNumbers.length+“rand()*rand(()值介于[“+min+”,“+max+”]”之间,图例:{位置:“无”},直方图:{bucketSize:1}});}<script src=“https://www.gstatic.com/charts/loader.js“></script><input-type=“number”id=“rand-min”value=“0”min=“0“max=“10”><input type=“number”id=“rand max”value=“9”min=“0”max=“10”><input type=“button”id=“draw chart”value=“Apply”><div id=“chart-1”style=“height:500px”>正在生成图表</分区>