我无法理解这个,哪个更随机?
rand()
OR:
rand() * rand()
我发现这是一个真正的脑筋急转弯,你能帮我吗?
编辑:
直觉上,我知道数学上的答案是它们是同样随机的,但我不禁想,如果你在将两者相乘时“运行随机数算法”两次,你会创建比只做一次更随机的东西。
我无法理解这个,哪个更随机?
rand()
OR:
rand() * rand()
我发现这是一个真正的脑筋急转弯,你能帮我吗?
编辑:
直觉上,我知道数学上的答案是它们是同样随机的,但我不禁想,如果你在将两者相乘时“运行随机数算法”两次,你会创建比只做一次更随机的东西。
当前回答
强制性的xkcd。。。
其他回答
正如其他人已经指出的那样,这个问题很难回答,因为我们每个人的大脑中都有自己的随机性图景。
这就是为什么,我强烈建议您花一些时间阅读本网站,以更好地了解随机性:
http://www.random.org/
回到真正的问题。在这个术语中没有或多或少的随机性:
两者都只是随机出现的!
在这两种情况下-仅rand()或rand(*rand)-情况相同:在几十亿个数字之后,序列将重复(!)。对观察者来说,它似乎是随机的,因为他不知道整个序列,但计算机没有真正的随机源,所以他也不能产生随机性。
天气是随机的吗?我们没有足够的传感器或知识来确定天气是否随机。
“随机”与“更随机”有点像问哪个零更为零。
在这种情况下,rand是PRNG,所以不是完全随机的。(事实上,如果种子是已知的,那是完全可以预测的)。将其乘以另一个值,使其不再随机。
真正的加密类型RNG实际上是随机的。通过任何类型的函数运行值都不能增加更多的熵,而且很可能会删除熵,使其不再随机。
假设rand()返回一个介于[0,1)之间的数字,很明显rand(*rand)将偏向于0。这是因为将x乘以[0,1)之间的数字将得到一个小于x的数字。下面是10000个随机数的分布:
google.charts.load(“current”,{packages:[“corechart”]});google.cacharts.setOnLoadCallback(drawChart);函数drawChart(){变量i;var randomNumbers=[];对于(i=0;i<10000;i++){randomNumbers.push(Math.rrandom()*Math.random());}var chart=新的google.visability.Histogram(document.getElementById(“chart-1”));var data=新的google.visibility.DataTable();data.addColumn(“数字”,“值”);randomNumbers.forEach(函数(randomNumber){data.addRow([randomNumber]);});chart.draw(数据{title:randomNumbers.length+“rand()*rand(值介于[0,1)之间”,图例:{位置:“无”}});}<script src=“https://www.gstatic.com/charts/loader.js“></script><div id=“chart-1”style=“height:500px”>正在生成图表</分区>
如果rand()返回[x,y]之间的整数,则得到以下分布。注意奇数与偶数的数量:
google.charts.load(“current”,{packages:[“corechart”]});google.cacharts.setOnLoadCallback(drawChart);document.querySelector(“#绘制图表”).addEventListener(“单击”,绘制图表);函数randomInt(最小值,最大值){return Math.floor(Math.random()*(max-min+1))+min;}函数drawChart(){var min=编号(document.querySelector(“#rand min”).value);var max=编号(document.querySelector(“#rand max”).value);如果(最小值>=最大值){回来}变量i;var randomNumbers=[];对于(i=0;i<10000;i++){randomNumbers.push(randomInt(最小,最大)*randomInt(最小,最小));}var chart=新的google.visability.Histogram(document.getElementById(“chart-1”));var data=新的google.visibility.DataTable();data.addColumn(“数字”,“值”);randomNumbers.forEach(函数(randomNumber){data.addRow([randomNumber]);});chart.draw(数据{title:randomNumbers.length+“rand()*rand(()值介于[“+min+”,“+max+”]”之间,图例:{位置:“无”},直方图:{bucketSize:1}});}<script src=“https://www.gstatic.com/charts/loader.js“></script><input-type=“number”id=“rand-min”value=“0”min=“0“max=“10”><input type=“number”id=“rand max”value=“9”min=“0”max=“10”><input type=“button”id=“draw chart”value=“Apply”><div id=“chart-1”style=“height:500px”>正在生成图表</分区>
答案将是,这取决于,希望rand()*rand(()比rand)更随机,但如下所示:
两个答案都取决于你的值的位数在大多数情况下,你根据伪随机算法生成(它主要是一个数字生成器,依赖于你的计算机时钟,而不是那么随机)。让你的代码更可读(不要用这种咒语来召唤一些随机的巫毒神)。
好吧,如果你检查上面的任何一个,我建议你使用简单的“rand()”。因为你的代码会更可读(不会问自己为什么要写这个,时间……嗯……超过2秒),易于维护(如果你想用super_rand替换rand函数)。
如果你想要更好的随机性,我建议你从任何提供足够噪声的源(无线电静态)流式传输,然后一个简单的rand()就足够了。
使用实现原始多项式的线性反馈移位寄存器(LFSR)。
结果将是一个2^n个伪随机数的序列,即在序列中没有重复,其中n是LFSR中的位数。。。。导致均匀分布。
http://en.wikipedia.org/wiki/Linear_feedback_shift_registerhttp://www.xilinx.com/support/documentation/application_notes/xapp052.pdf
使用基于计算机时钟的微信号的“随机”种子,或者可能是文件系统中一些不断变化的数据的md5结果的子集。
例如,32位LFSR将从给定种子开始按顺序生成2^32个唯一数字(没有2个相同)。序列将始终按照相同的顺序,但对于不同的种子,起点将不同(显然)。因此,如果种子之间可能重复的序列不是问题,那么这可能是一个不错的选择。
我已经使用128位LFSR在硬件模拟器中使用种子生成随机测试,该种子是对不断变化的系统数据的md5结果。