我无法理解这个,哪个更随机?

rand()

OR:

rand() * rand()

我发现这是一个真正的脑筋急转弯,你能帮我吗?


编辑:

直觉上,我知道数学上的答案是它们是同样随机的,但我不禁想,如果你在将两者相乘时“运行随机数算法”两次,你会创建比只做一次更随机的东西。


当前回答

强制性的xkcd。。。

其他回答

假设你有一个简单的硬币翻转问题,偶数被认为是正面,奇数被认为是反面。逻辑实现是:

rand() mod 2

在足够大的分布范围内,偶数的数量应该等于奇数的数量。

现在考虑一个小小的调整:

rand() * rand() mod 2

如果其中一个结果是偶数,那么整个结果应该是偶数。考虑4种可能的结果(偶*偶=偶,偶*奇=偶,奇*偶=偶数,奇*奇=奇数)。现在,在足够大的分布范围内,答案应该是75%的时间。

如果我是你,我敢打赌。

这条评论实际上更多的是解释为什么不应该基于您的方法实现自定义随机函数,而不是讨论随机性的数学财产。

很容易证明两个随机数之和不一定是随机的。假设你有一个6面骰子。每个数字有1/6的机会出现。现在假设你有2个骰子,并将结果相加。这些总数的分布不是1/12。为什么?因为某些数字比其他数字更多。它们有多个分区。例如,数字2仅是1+1的和,但7可以由3+4、4+3或5+2等组成,因此它出现的机会更大。

因此,在本例中,对随机函数应用变换(在这种情况下为加法)不会使其更随机,或必然保持随机性。在上述骰子的情况下,分布偏向于7,因此随机性较小。

我猜这两种方法都是随机的,尽管我的直觉会说rand()*rand(()不那么随机,因为它会产生更多的零。一旦一个rand()为0,总数即为0

事实上,仔细想想rand()*rand(()比rand(。原因如下。

基本上,奇数和偶数的数量相同。假设0.04325是奇数,像0.388是偶数,0.4是偶数,0.15是奇数,

这意味着rand()有相等的机会成为偶数或奇数小数。

另一方面,rand()*rand(()的几率有点不同。让我们说:

double a = rand();
double b = rand();
double c = a * b;

a和b都有50%的几率是偶数或奇数。知道这一点

偶数*偶数=偶数偶数*奇数=偶数奇数*奇数=奇数奇数*偶数=偶数

这意味着c有75%的几率是偶数,而只有25%的几率是奇数,这使得rand()*rand(()的值比rand)更可预测,因此随机性更小。

这不是很明显,但rand()通常比rand(*rand)更随机。重要的是,对于大多数用途来说,这实际上不是很重要。

但首先,它们产生了不同的分布。如果这是你想要的,这不是问题,但这很重要。如果你需要一个特定的分布,那么忽略整个“哪个更随机”的问题。那么为什么rand()更随机呢?

rand()之所以更随机(假设它产生的是[0..1]范围内的浮点随机数,这是非常常见的)的核心是,当你将两个FP数与尾数中的大量信息相乘时,你会在结尾处丢失一些信息;IEEE双精度浮点中没有足够的位来保存从[0..1]中均匀随机选择的两个IEEE双精度浮点数中的所有信息,这些额外的信息位将丢失。当然,这无关紧要,因为你(可能)不会使用这些信息,但损失是真实的。您产生哪种分布(即,使用哪种操作进行组合)也并不重要。这些随机数中的每一个都有(最多)52位随机信息——这就是IEEE双精度的容量——如果你将两个或多个随机数合并为一个,那么你仍然只能拥有最多52位的随机信息。

大多数随机数的使用甚至没有使用随机源中实际可用的那么多随机性。得到一个好的PRNG,不要太担心它。(“好”的程度取决于你在用它做什么;你在做蒙特卡洛模拟或密码学时必须小心,否则你可能会使用标准PRNG,因为这通常要快得多。)