我无法理解这个,哪个更随机?
rand()
OR:
rand() * rand()
我发现这是一个真正的脑筋急转弯,你能帮我吗?
编辑:
直觉上,我知道数学上的答案是它们是同样随机的,但我不禁想,如果你在将两者相乘时“运行随机数算法”两次,你会创建比只做一次更随机的东西。
我无法理解这个,哪个更随机?
rand()
OR:
rand() * rand()
我发现这是一个真正的脑筋急转弯,你能帮我吗?
编辑:
直觉上,我知道数学上的答案是它们是同样随机的,但我不禁想,如果你在将两者相乘时“运行随机数算法”两次,你会创建比只做一次更随机的东西。
当前回答
关于“随机性”的一些事情是反直觉的。
假设rand()的平面分布,下面将得到非平面分布:
高偏差:sqrt(rand(范围^2))中间偏差峰值:(rand(range)+rand(range))/2低:偏差:范围-sqrt(rand(范围^2))
有很多其他方法可以创建特定的偏置曲线。我对rand()*rand(()做了一个快速测试,它得到了一个非常非线性的分布。
其他回答
强制性的xkcd。。。
只是一个澄清
尽管每当你试图发现伪随机变量或其乘法的随机性时,前面的答案都是正确的,但你应该知道,虽然random()通常是均匀分布的,但random(*random)却不是。
实例
这是通过伪随机变量模拟的均匀随机分布样本:
BarChart[BinCounts[RandomReal[{0, 1}, 50000], 0.01]]
这是两个随机变量相乘后得到的分布:
BarChart[BinCounts[Table[RandomReal[{0, 1}, 50000] *
RandomReal[{0, 1}, 50000], {50000}], 0.01]]
所以,两者都是“随机”的,但它们的分布是非常不同的。
另一个例子
当2*Random()均匀分布时:
BarChart[BinCounts[2 * RandomReal[{0, 1}, 50000], 0.01]]
随机()+随机()不是!
BarChart[BinCounts[Table[RandomReal[{0, 1}, 50000] +
RandomReal[{0, 1}, 50000], {50000}], 0.01]]
中心极限定理
中心极限定理指出,随着项的增加,Random()的和趋于正态分布。
只需四个术语即可获得:
BarChart[BinCounts[Table[RandomReal[{0, 1}, 50000] + RandomReal[{0, 1}, 50000] +
Table[RandomReal[{0, 1}, 50000] + RandomReal[{0, 1}, 50000],
{50000}],
0.01]]
在这里,通过将1、2、4、6、10和20个均匀分布的随机变量相加,可以看到从均匀分布到正态分布的道路:
Edit
几个学分
感谢Thomas Ahle在评论中指出,最后两张图片中显示的概率分布称为Irwin Hall分布
感谢Heike出色的撕裂功能
我猜这两种方法都是随机的,尽管我的直觉会说rand()*rand(()不那么随机,因为它会产生更多的零。一旦一个rand()为0,总数即为0
两者都不是“更随机”的。
rand()基于伪随机种子生成一组可预测的数字(通常基于当前时间,该时间总是在变化)。将序列中的两个连续数字相乘,生成一个不同但同样可预测的数字序列。
关于这是否会减少冲突,答案是否定的。它实际上会增加冲突,这是因为在0<n<1的情况下,两个数字相乘的结果。结果将是一个较小的分数,导致结果偏向频谱的低端。
一些进一步的解释。在下文中,“不可预测”和“随机”是指某人根据先前的数字猜测下一个数字的能力,即预言。
给定生成以下值列表的种子x:
0.3, 0.6, 0.2, 0.4, 0.8, 0.1, 0.7, 0.3, ...
rand()将生成上述列表,rand(*rand)将生成:
0.18, 0.08, 0.08, 0.21, ...
这两种方法将始终为同一种子生成相同的数字列表,因此预言者同样可以预测。但是如果你看一下两个调用相乘的结果,你会发现它们都在0.3以下,尽管在原始序列中分布良好。由于两个分数相乘的影响,这些数字是有偏差的。由此产生的数字总是较小,因此更可能发生碰撞,尽管仍然无法预测。
浮动随机数通常基于一种算法,该算法产生一个介于零和一定范围之间的整数。因此,通过使用rand()*rand((),您实际上是在说int_rand()*int_rand()/rand_max ^2-这意味着您排除了任何素数/rand_max^2。
这显著改变了随机分布。
rand()在大多数系统中都是均匀分布的,如果正确播种,很难预测。除非你有特殊的理由对其进行数学运算(例如,将分布成形为所需的曲线),否则使用该方法。