我无法理解这个,哪个更随机?

rand()

OR:

rand() * rand()

我发现这是一个真正的脑筋急转弯,你能帮我吗?


编辑:

直觉上,我知道数学上的答案是它们是同样随机的,但我不禁想,如果你在将两者相乘时“运行随机数算法”两次,你会创建比只做一次更随机的东西。


当前回答

两者都不是“更随机”的。

rand()基于伪随机种子生成一组可预测的数字(通常基于当前时间,该时间总是在变化)。将序列中的两个连续数字相乘,生成一个不同但同样可预测的数字序列。

关于这是否会减少冲突,答案是否定的。它实际上会增加冲突,这是因为在0<n<1的情况下,两个数字相乘的结果。结果将是一个较小的分数,导致结果偏向频谱的低端。

一些进一步的解释。在下文中,“不可预测”和“随机”是指某人根据先前的数字猜测下一个数字的能力,即预言。

给定生成以下值列表的种子x:

0.3, 0.6, 0.2, 0.4, 0.8, 0.1, 0.7, 0.3, ...

rand()将生成上述列表,rand(*rand)将生成:

0.18, 0.08, 0.08, 0.21, ...

这两种方法将始终为同一种子生成相同的数字列表,因此预言者同样可以预测。但是如果你看一下两个调用相乘的结果,你会发现它们都在0.3以下,尽管在原始序列中分布良好。由于两个分数相乘的影响,这些数字是有偏差的。由此产生的数字总是较小,因此更可能发生碰撞,尽管仍然无法预测。

其他回答

当你对随机数的组合会发生什么感到怀疑时,你可以利用你在统计理论中学到的经验。

在OP的情况下,他想知道X*X=X^2的结果是什么,其中X是沿统一[0,1]分布的随机变量。我们将使用CDF技术,因为它只是一对一映射。

由于X~Uniform[0,1],其cdf为:fX(X)=1我们需要转换Y<-X^2,因此Y=X^2求逆x(y):sqrt(y)=x,这给出了x作为y的函数。接下来,求导数dx/dy:d/dy(sqrt(y))=1/(2sqrt(y)

Y的分布如下:fY(Y)=fX(x(Y))|dx/dy |=1/(2 sqrt(Y)

我们还没有完成,我们必须得到Y的域,因为0<=x<1,0<=x^2<1因此Y在范围[0,1)内。如果你想检查Y的pdf是否真的是pdf,请在域中集成它:从0到1集成1/(2 sqrt(Y)),实际上,它会弹出为1。此外,请注意所述函数的形状看起来像belisarious发布的内容。

至于X1+X2+…+Xn,(其中Xi ~一致[0,1]),我们可以求助于中心极限定理,它适用于存在矩的任何分布。这就是Z检验存在的原因。

用于确定生成的pdf的其他技术包括雅可比变换(这是cdf技术的广义版本)和MGF技术。

编辑:作为澄清,请注意,我所说的是结果转换的分布,而不是其随机性。这实际上是一个单独的讨论。我实际上得到的是(rand())^2。对于rand()*rand((),它要复杂得多,无论如何,这不会导致任何类型的均匀分布。

使用实现原始多项式的线性反馈移位寄存器(LFSR)。

结果将是一个2^n个伪随机数的序列,即在序列中没有重复,其中n是LFSR中的位数。。。。导致均匀分布。

http://en.wikipedia.org/wiki/Linear_feedback_shift_registerhttp://www.xilinx.com/support/documentation/application_notes/xapp052.pdf

使用基于计算机时钟的微信号的“随机”种子,或者可能是文件系统中一些不断变化的数据的md5结果的子集。

例如,32位LFSR将从给定种子开始按顺序生成2^32个唯一数字(没有2个相同)。序列将始终按照相同的顺序,但对于不同的种子,起点将不同(显然)。因此,如果种子之间可能重复的序列不是问题,那么这可能是一个不错的选择。

我已经使用128位LFSR在硬件模拟器中使用种子生成随机测试,该种子是对不断变化的系统数据的md5结果。

关于“随机性”的一些事情是反直觉的。

假设rand()的平面分布,下面将得到非平面分布:

高偏差:sqrt(rand(范围^2))中间偏差峰值:(rand(range)+rand(range))/2低:偏差:范围-sqrt(rand(范围^2))

有很多其他方法可以创建特定的偏置曲线。我对rand()*rand(()做了一个快速测试,它得到了一个非常非线性的分布。

只是一个澄清

尽管每当你试图发现伪随机变量或其乘法的随机性时,前面的答案都是正确的,但你应该知道,虽然random()通常是均匀分布的,但random(*random)却不是。

实例

这是通过伪随机变量模拟的均匀随机分布样本:

        BarChart[BinCounts[RandomReal[{0, 1}, 50000], 0.01]]

这是两个随机变量相乘后得到的分布:

        BarChart[BinCounts[Table[RandomReal[{0, 1}, 50000] * 
                                 RandomReal[{0, 1}, 50000], {50000}], 0.01]]

所以,两者都是“随机”的,但它们的分布是非常不同的。

另一个例子

当2*Random()均匀分布时:

        BarChart[BinCounts[2 * RandomReal[{0, 1}, 50000], 0.01]]

随机()+随机()不是!

        BarChart[BinCounts[Table[RandomReal[{0, 1}, 50000] + 
                                 RandomReal[{0, 1}, 50000], {50000}], 0.01]]

中心极限定理

中心极限定理指出,随着项的增加,Random()的和趋于正态分布。

只需四个术语即可获得:

BarChart[BinCounts[Table[RandomReal[{0, 1}, 50000] + RandomReal[{0, 1}, 50000] +
                   Table[RandomReal[{0, 1}, 50000] + RandomReal[{0, 1}, 50000],
                   {50000}],
         0.01]]  

在这里,通过将1、2、4、6、10和20个均匀分布的随机变量相加,可以看到从均匀分布到正态分布的道路:

Edit

几个学分

感谢Thomas Ahle在评论中指出,最后两张图片中显示的概率分布称为Irwin Hall分布

感谢Heike出色的撕裂功能

浮动随机数通常基于一种算法,该算法产生一个介于零和一定范围之间的整数。因此,通过使用rand()*rand((),您实际上是在说int_rand()*int_rand()/rand_max ^2-这意味着您排除了任何素数/rand_max^2。

这显著改变了随机分布。

rand()在大多数系统中都是均匀分布的,如果正确播种,很难预测。除非你有特殊的理由对其进行数学运算(例如,将分布成形为所需的曲线),否则使用该方法。