我无法理解这个,哪个更随机?
rand()
OR:
rand() * rand()
我发现这是一个真正的脑筋急转弯,你能帮我吗?
编辑:
直觉上,我知道数学上的答案是它们是同样随机的,但我不禁想,如果你在将两者相乘时“运行随机数算法”两次,你会创建比只做一次更随机的东西。
我无法理解这个,哪个更随机?
rand()
OR:
rand() * rand()
我发现这是一个真正的脑筋急转弯,你能帮我吗?
编辑:
直觉上,我知道数学上的答案是它们是同样随机的,但我不禁想,如果你在将两者相乘时“运行随机数算法”两次,你会创建比只做一次更随机的东西。
当前回答
只是一个澄清
尽管每当你试图发现伪随机变量或其乘法的随机性时,前面的答案都是正确的,但你应该知道,虽然random()通常是均匀分布的,但random(*random)却不是。
实例
这是通过伪随机变量模拟的均匀随机分布样本:
BarChart[BinCounts[RandomReal[{0, 1}, 50000], 0.01]]
这是两个随机变量相乘后得到的分布:
BarChart[BinCounts[Table[RandomReal[{0, 1}, 50000] *
RandomReal[{0, 1}, 50000], {50000}], 0.01]]
所以,两者都是“随机”的,但它们的分布是非常不同的。
另一个例子
当2*Random()均匀分布时:
BarChart[BinCounts[2 * RandomReal[{0, 1}, 50000], 0.01]]
随机()+随机()不是!
BarChart[BinCounts[Table[RandomReal[{0, 1}, 50000] +
RandomReal[{0, 1}, 50000], {50000}], 0.01]]
中心极限定理
中心极限定理指出,随着项的增加,Random()的和趋于正态分布。
只需四个术语即可获得:
BarChart[BinCounts[Table[RandomReal[{0, 1}, 50000] + RandomReal[{0, 1}, 50000] +
Table[RandomReal[{0, 1}, 50000] + RandomReal[{0, 1}, 50000],
{50000}],
0.01]]
在这里,通过将1、2、4、6、10和20个均匀分布的随机变量相加,可以看到从均匀分布到正态分布的道路:
Edit
几个学分
感谢Thomas Ahle在评论中指出,最后两张图片中显示的概率分布称为Irwin Hall分布
感谢Heike出色的撕裂功能
其他回答
这里有一个简单的答案。考虑垄断。你掷两个六面骰子(对于喜欢游戏符号的人来说是2d6),然后求和。最常见的结果是7,因为有6种可能的方式可以掷7(1,6,5,3,44,3,5,2和6,1)。而2只能在1,1上滚动。很容易看出,掷1d6和掷1d12是不同的,即使范围相同(忽略1d12上可以得到1,点保持不变)。将结果相乘而不是相加会以类似的方式扭曲它们,因为大多数结果都位于范围的中间。如果您试图减少异常值,这是一个好方法,但它无助于使分布均匀。
(奇怪的是,它也会增加低掷。假设你的随机性从0开始,你会看到一个峰值在0,因为它会将其他掷骰变成0。考虑两个介于0和1(包括0和1)之间的随机数,然后相乘。如果其中一个结果为0,则无论其他结果如何,整个结果都将变为0。从中得到1的唯一方法是两卷都是1。在实践中,这可能无关紧要,但这会形成一个奇怪的图形。)
当你对随机数的组合会发生什么感到怀疑时,你可以利用你在统计理论中学到的经验。
在OP的情况下,他想知道X*X=X^2的结果是什么,其中X是沿统一[0,1]分布的随机变量。我们将使用CDF技术,因为它只是一对一映射。
由于X~Uniform[0,1],其cdf为:fX(X)=1我们需要转换Y<-X^2,因此Y=X^2求逆x(y):sqrt(y)=x,这给出了x作为y的函数。接下来,求导数dx/dy:d/dy(sqrt(y))=1/(2sqrt(y)
Y的分布如下:fY(Y)=fX(x(Y))|dx/dy |=1/(2 sqrt(Y)
我们还没有完成,我们必须得到Y的域,因为0<=x<1,0<=x^2<1因此Y在范围[0,1)内。如果你想检查Y的pdf是否真的是pdf,请在域中集成它:从0到1集成1/(2 sqrt(Y)),实际上,它会弹出为1。此外,请注意所述函数的形状看起来像belisarious发布的内容。
至于X1+X2+…+Xn,(其中Xi ~一致[0,1]),我们可以求助于中心极限定理,它适用于存在矩的任何分布。这就是Z检验存在的原因。
用于确定生成的pdf的其他技术包括雅可比变换(这是cdf技术的广义版本)和MGF技术。
编辑:作为澄清,请注意,我所说的是结果转换的分布,而不是其随机性。这实际上是一个单独的讨论。我实际上得到的是(rand())^2。对于rand()*rand((),它要复杂得多,无论如何,这不会导致任何类型的均匀分布。
浮动随机数通常基于一种算法,该算法产生一个介于零和一定范围之间的整数。因此,通过使用rand()*rand((),您实际上是在说int_rand()*int_rand()/rand_max ^2-这意味着您排除了任何素数/rand_max^2。
这显著改变了随机分布。
rand()在大多数系统中都是均匀分布的,如果正确播种,很难预测。除非你有特殊的理由对其进行数学运算(例如,将分布成形为所需的曲线),否则使用该方法。
正如其他人所说,简单的简短答案是:不,它不是更随机的,但它确实改变了分布。
假设你在玩骰子游戏。你有一些完全公平的随机骰子。如果在每次掷骰子之前,你先把两个骰子放在一个碗里,摇晃它,随机选一个骰子,然后掷那一个,掷骰子会更随机吗?显然,这不会有什么不同。如果两个骰子都给出了随机数字,那么从两个骰子中随机选择一个不会有任何区别。无论哪种方式,你都会得到一个介于1和6之间的随机数,在足够数量的卷上均匀分布。
我想在现实生活中,如果你怀疑骰子可能不公平,这样的程序可能会有用。例如,如果骰子稍微不平衡,那么一个骰子往往比1/6的时间更频繁地给出1,而另一个骰子则往往异常频繁地给出6,那么在这两个骰子之间随机选择将有助于掩盖偏差。(尽管在这种情况下,1和6仍然比2、3、4和5多。嗯,我想这取决于失衡的性质。)
随机性有很多定义。随机序列的一个定义是,它是由随机过程产生的一系列数字。根据这个定义,如果我掷一个公平骰子5次,得到数字2、4、3、2、5,那就是一个随机序列。如果我再掷同样的骰子5次,得到1,1,1、1,1和1,那么这也是一个随机序列。
一些海报指出,计算机上的随机函数不是真正随机的,而是伪随机的,如果你知道算法和种子,它们是完全可预测的。这是真的,但大多数时候是完全无关的。如果我洗牌,然后一次翻一张,这应该是一个随机系列。如果有人偷看卡片,结果将是完全可预测的,但根据大多数随机性的定义,这并不会减少随机性。如果该系列通过了随机性统计测试,我偷看卡片的事实不会改变这一事实。在实践中,如果我们在赌你猜下一张牌的能力,那么你偷看这些牌的事实是非常重要的。如果我们使用该系列来模拟访问我们网站的访客的菜单选择,以测试系统的性能,那么你偷看的事实将毫无区别。(只要您不修改程序以利用这些知识。)
EDIT
我认为我无法将我对蒙蒂霍尔问题的回应变成评论,所以我会更新我的答案。
对于那些没有阅读Belisarius链接的人来说,其要点是:游戏节目参赛者可以选择3个门。在一个人的背后是有价值的奖品,在其他人的背后是毫无价值的东西。他选了1号门。在揭示它是赢家还是输家之前,主持人打开3号门,揭示它是输家。然后,他给了参赛者切换到2号门的机会。参赛者是否应该这样做?
答案是,他应该改变,这违背了许多人的直觉。他最初选择的获胜者的概率是1/3,而另一个门获胜的概率是2/3。我和许多其他人的直觉一样,最初的直觉是,切换不会有任何好处,赔率刚刚改为50:50。
毕竟,假设有人在主持人打开丢失的门后打开了电视。那个人会看到剩下的两扇紧闭的门。假设他知道游戏的性质,他会说每个门都有1/2的机会隐藏奖品。观众的赔率是1/2:1/2,而参赛者的赔率却是1/3:2/3?
我真的不得不考虑这一点,才能让我的直觉成形。要了解它,请理解,当我们讨论像这样的问题中的概率时,我们的意思是,在给定可用信息的情况下,您分配的概率。对于将奖品放在1号门后面的工作人员来说,奖品在1号门后的概率为100%,而在其他两个门后面的概率为零。
机组成员的赔率与参赛者的赔率不同,因为他知道参赛者不知道的东西,即他把奖品放在了哪个门后面。同样,竞争对手的赔率与观众的赔率不同,因为他知道观众不知道的东西,即他最初选择了哪扇门。这并不是无关紧要的,因为主人选择打开哪扇门并不是随机的。他不会打开选手选的门,也不会打开隐藏奖品的门。如果这是同一扇门,他就有两个选择。如果它们是不同的门,那么只剩下一扇门。
那么我们如何得出1/3和2/3?当参赛者最初选择一扇门时,他有1/3的机会选择获胜者。我认为这是显而易见的。这意味着有2/3的机会,其他门中的一个获胜。如果东道主给他机会在不提供任何额外信息的情况下进行切换,那就不会有任何收获。同样,这应该是显而易见的。但有一种看法是,他有2/3的机会通过换人获胜。但他有两个选择。因此,每一个人只有2/3除以2=1/3的机会成为赢家,这并不比他最初的选择更好。当然,我们已经知道最终结果,这只是以不同的方式计算。
但现在主持人透露,这两个选择中的一个不是赢家。因此,对于他没有选择的门有2/3的机会获胜,他现在知道,2个备选方案中的1个不是。另一个可能是,也可能不是。因此,他不再有2/3除以2。他打开的门为零,关闭的门为2/3。
“随机”与“更随机”有点像问哪个零更为零。
在这种情况下,rand是PRNG,所以不是完全随机的。(事实上,如果种子是已知的,那是完全可以预测的)。将其乘以另一个值,使其不再随机。
真正的加密类型RNG实际上是随机的。通过任何类型的函数运行值都不能增加更多的熵,而且很可能会删除熵,使其不再随机。