我无法理解这个,哪个更随机?
rand()
OR:
rand() * rand()
我发现这是一个真正的脑筋急转弯,你能帮我吗?
编辑:
直觉上,我知道数学上的答案是它们是同样随机的,但我不禁想,如果你在将两者相乘时“运行随机数算法”两次,你会创建比只做一次更随机的东西。
我无法理解这个,哪个更随机?
rand()
OR:
rand() * rand()
我发现这是一个真正的脑筋急转弯,你能帮我吗?
编辑:
直觉上,我知道数学上的答案是它们是同样随机的,但我不禁想,如果你在将两者相乘时“运行随机数算法”两次,你会创建比只做一次更随机的东西。
当前回答
当你对随机数的组合会发生什么感到怀疑时,你可以利用你在统计理论中学到的经验。
在OP的情况下,他想知道X*X=X^2的结果是什么,其中X是沿统一[0,1]分布的随机变量。我们将使用CDF技术,因为它只是一对一映射。
由于X~Uniform[0,1],其cdf为:fX(X)=1我们需要转换Y<-X^2,因此Y=X^2求逆x(y):sqrt(y)=x,这给出了x作为y的函数。接下来,求导数dx/dy:d/dy(sqrt(y))=1/(2sqrt(y)
Y的分布如下:fY(Y)=fX(x(Y))|dx/dy |=1/(2 sqrt(Y)
我们还没有完成,我们必须得到Y的域,因为0<=x<1,0<=x^2<1因此Y在范围[0,1)内。如果你想检查Y的pdf是否真的是pdf,请在域中集成它:从0到1集成1/(2 sqrt(Y)),实际上,它会弹出为1。此外,请注意所述函数的形状看起来像belisarious发布的内容。
至于X1+X2+…+Xn,(其中Xi ~一致[0,1]),我们可以求助于中心极限定理,它适用于存在矩的任何分布。这就是Z检验存在的原因。
用于确定生成的pdf的其他技术包括雅可比变换(这是cdf技术的广义版本)和MGF技术。
编辑:作为澄清,请注意,我所说的是结果转换的分布,而不是其随机性。这实际上是一个单独的讨论。我实际上得到的是(rand())^2。对于rand()*rand((),它要复杂得多,无论如何,这不会导致任何类型的均匀分布。
其他回答
大多数rand()实现都有一定的周期。也就是说,在大量的调用之后,序列会重复。rand()*rand(()的输出序列在一半时间内重复,因此在这个意义上它“不那么随机”。
此外,如果没有仔细的构造,对随机值执行算术往往会导致较少的随机性。上面的一张海报引用了“rand()+rand(()+rand()…”(例如,k倍),这实际上会倾向于rand(返回值范围的平均值的k倍。(这是一种随机行走,步数与平均值对称。)
具体来说,假设rand()函数返回[0,1)范围内的均匀分布随机实数。(是的,这个例子允许无限精度。这不会改变结果。)您没有选择特定的语言,不同的语言可能会做不同的事情,但以下分析适用于对rand()的任何非反常实现的修改。乘积rand()*rand(()也在[0,1)范围内,但不再均匀分布。事实上,乘积在区间[0,1/4)和区间[1/4,1)中的可能性一样大。更多的乘法将使结果进一步趋向于零。这使得结果更可预测。在广义上,更可预测的==更少的随机性。
几乎所有对均匀随机输入的操作序列都是非均匀随机的,从而提高了可预测性。小心的话,我们可以克服这一特性,但这样就可以更容易地在实际需要的范围内生成一个均匀分布的随机数,而不是在算术上浪费时间。
假设你有一个简单的硬币翻转问题,偶数被认为是正面,奇数被认为是反面。逻辑实现是:
rand() mod 2
在足够大的分布范围内,偶数的数量应该等于奇数的数量。
现在考虑一个小小的调整:
rand() * rand() mod 2
如果其中一个结果是偶数,那么整个结果应该是偶数。考虑4种可能的结果(偶*偶=偶,偶*奇=偶,奇*偶=偶数,奇*奇=奇数)。现在,在足够大的分布范围内,答案应该是75%的时间。
如果我是你,我敢打赌。
这条评论实际上更多的是解释为什么不应该基于您的方法实现自定义随机函数,而不是讨论随机性的数学财产。
根据您的计算机体系结构,相乘数字最终会得到更小的解决方案范围。
如果您的计算机显示16位数字,rand()将为0.1234567890123乘以第二个rand(),0.1234567890123,将得到0.0152415如果你把实验重复10^14次,你肯定会找到更少的解决方案。
过度简化以说明一点。
假设随机函数只输出0或1。
random()是(0,1)之一,但random(()*random(是(0,0,0,1)之一
你可以清楚地看到,在第二种情况下,获得0的机会绝不等于获得1的机会。
当我第一次发布这个答案时,我希望尽可能简短,以便阅读它的人一眼就能理解random()和random(*random)之间的区别,但我无法阻止自己回答最初的广告垃圾问题:
哪个更随机?
如果random()、random(()*random()、random()+random(()、(random(+1)/2或任何其他不会导致固定结果的组合具有相同的熵源(或者在伪随机生成器的情况下具有相同的初始状态),那么答案将是它们具有相同的随机性(差异在于它们的分布)。我们可以看到的一个完美的例子是Craps游戏。你得到的数字将是随机的(1,6)+随机的(6,6),我们都知道得到7的几率最高,但这并不意味着掷两个骰子的结果比掷一个骰子的效果更随机。
“随机”与“更随机”有点像问哪个零更为零。
在这种情况下,rand是PRNG,所以不是完全随机的。(事实上,如果种子是已知的,那是完全可以预测的)。将其乘以另一个值,使其不再随机。
真正的加密类型RNG实际上是随机的。通过任何类型的函数运行值都不能增加更多的熵,而且很可能会删除熵,使其不再随机。