我无法理解这个,哪个更随机?
rand()
OR:
rand() * rand()
我发现这是一个真正的脑筋急转弯,你能帮我吗?
编辑:
直觉上,我知道数学上的答案是它们是同样随机的,但我不禁想,如果你在将两者相乘时“运行随机数算法”两次,你会创建比只做一次更随机的东西。
我无法理解这个,哪个更随机?
rand()
OR:
rand() * rand()
我发现这是一个真正的脑筋急转弯,你能帮我吗?
编辑:
直觉上,我知道数学上的答案是它们是同样随机的,但我不禁想,如果你在将两者相乘时“运行随机数算法”两次,你会创建比只做一次更随机的东西。
当前回答
大多数这种分布发生是因为你必须限制或规范随机数。
我们将其标准化为全部为正,符合范围,甚至符合指定变量类型的内存大小限制。
换句话说,因为我们必须将随机调用限制在0和X之间(X是变量的大小限制),所以我们将有一组介于0和X的“随机”数。
现在,当你将随机数与另一个随机数相加时,总和将介于0和2X之间。。。这会使值偏离边缘点(当两个随机数在较大范围内时,将两个小数字相加和将两个大数字相加的概率非常小)。
想象一下这样一个例子,你有一个接近于零的数字,你将它与另一个随机数相加,它肯定会变大,远离0(这对于大数字是正确的,因为随机函数不可能两次返回两个大数字(接近于X的数字)。
现在,如果你用负数和正数设置随机方法(跨越零轴),情况将不再如此。
例如,假设RandomReal({-x,x},50000,.01),那么你会得到负数和正数的偶数分布,如果你将随机数相加,它们将保持其“随机性”。
现在我不确定Random()*Random(()从负到正的跨度会发生什么。。。这将是一个有趣的图表。。。但我现在得回去写代码了-P
其他回答
好的,所以我会尝试添加一些值来补充其他答案,说你正在创建和使用一个随机数生成器。
随机数发生器是一种具有多种特性的设备(从非常普遍的意义上讲),可以根据需要进行修改。其中一些(来自我)是:
熵:如香农熵分布:统计分布(泊松、正态等)类型:数字的来源(算法、自然事件、组合等)和应用的算法。效率:执行的速度或复杂性。模式:周期、顺序、运行等。也许还有更多。。。
在这里的大多数答案中,分布是主要的关注点,但通过混合和匹配函数和参数,您可以创建生成随机数的新方法,这些随机数将具有不同的特征,其中一些特征乍一看可能不明显。
关于“随机性”的一些事情是反直觉的。
假设rand()的平面分布,下面将得到非平面分布:
高偏差:sqrt(rand(范围^2))中间偏差峰值:(rand(range)+rand(range))/2低:偏差:范围-sqrt(rand(范围^2))
有很多其他方法可以创建特定的偏置曲线。我对rand()*rand(()做了一个快速测试,它得到了一个非常非线性的分布。
答案将是,这取决于,希望rand()*rand(()比rand)更随机,但如下所示:
两个答案都取决于你的值的位数在大多数情况下,你根据伪随机算法生成(它主要是一个数字生成器,依赖于你的计算机时钟,而不是那么随机)。让你的代码更可读(不要用这种咒语来召唤一些随机的巫毒神)。
好吧,如果你检查上面的任何一个,我建议你使用简单的“rand()”。因为你的代码会更可读(不会问自己为什么要写这个,时间……嗯……超过2秒),易于维护(如果你想用super_rand替换rand函数)。
如果你想要更好的随机性,我建议你从任何提供足够噪声的源(无线电静态)流式传输,然后一个简单的rand()就足够了。
大多数这种分布发生是因为你必须限制或规范随机数。
我们将其标准化为全部为正,符合范围,甚至符合指定变量类型的内存大小限制。
换句话说,因为我们必须将随机调用限制在0和X之间(X是变量的大小限制),所以我们将有一组介于0和X的“随机”数。
现在,当你将随机数与另一个随机数相加时,总和将介于0和2X之间。。。这会使值偏离边缘点(当两个随机数在较大范围内时,将两个小数字相加和将两个大数字相加的概率非常小)。
想象一下这样一个例子,你有一个接近于零的数字,你将它与另一个随机数相加,它肯定会变大,远离0(这对于大数字是正确的,因为随机函数不可能两次返回两个大数字(接近于X的数字)。
现在,如果你用负数和正数设置随机方法(跨越零轴),情况将不再如此。
例如,假设RandomReal({-x,x},50000,.01),那么你会得到负数和正数的偶数分布,如果你将随机数相加,它们将保持其“随机性”。
现在我不确定Random()*Random(()从负到正的跨度会发生什么。。。这将是一个有趣的图表。。。但我现在得回去写代码了-P
当你对随机数的组合会发生什么感到怀疑时,你可以利用你在统计理论中学到的经验。
在OP的情况下,他想知道X*X=X^2的结果是什么,其中X是沿统一[0,1]分布的随机变量。我们将使用CDF技术,因为它只是一对一映射。
由于X~Uniform[0,1],其cdf为:fX(X)=1我们需要转换Y<-X^2,因此Y=X^2求逆x(y):sqrt(y)=x,这给出了x作为y的函数。接下来,求导数dx/dy:d/dy(sqrt(y))=1/(2sqrt(y)
Y的分布如下:fY(Y)=fX(x(Y))|dx/dy |=1/(2 sqrt(Y)
我们还没有完成,我们必须得到Y的域,因为0<=x<1,0<=x^2<1因此Y在范围[0,1)内。如果你想检查Y的pdf是否真的是pdf,请在域中集成它:从0到1集成1/(2 sqrt(Y)),实际上,它会弹出为1。此外,请注意所述函数的形状看起来像belisarious发布的内容。
至于X1+X2+…+Xn,(其中Xi ~一致[0,1]),我们可以求助于中心极限定理,它适用于存在矩的任何分布。这就是Z检验存在的原因。
用于确定生成的pdf的其他技术包括雅可比变换(这是cdf技术的广义版本)和MGF技术。
编辑:作为澄清,请注意,我所说的是结果转换的分布,而不是其随机性。这实际上是一个单独的讨论。我实际上得到的是(rand())^2。对于rand()*rand((),它要复杂得多,无论如何,这不会导致任何类型的均匀分布。