我无法理解这个,哪个更随机?

rand()

OR:

rand() * rand()

我发现这是一个真正的脑筋急转弯,你能帮我吗?


编辑:

直觉上,我知道数学上的答案是它们是同样随机的,但我不禁想,如果你在将两者相乘时“运行随机数算法”两次,你会创建比只做一次更随机的东西。


当前回答

公认的答案很好,但有另一种方法可以回答你的问题。PachydermPuncher的答案已经采用了这种替代方法,我只是将其扩展一点。

思考信息理论最简单的方法是用最小的信息单位,一个比特。

在C标准库中,rand()返回一个0到rand_MAX范围内的整数,根据平台的不同,这个限制可能会有不同的定义。假设RAND_MAX恰好被定义为2^n-1,其中n是某个整数(这恰好是Microsoft实现中的情况,其中n为15)。然后我们可以说,一个好的实现将返回n位信息。

想象一下,rand()通过翻转硬币找到一位的值来构造随机数,然后重复直到它有一批15位。然后,这些位是独立的(任何一个位的值都不会影响同一批中其他位具有特定值的可能性)。因此,独立考虑的每个比特都像一个介于0和1之间的随机数,并且在该范围内“均匀分布”(可能是0和1)。

位的独立性确保了由一批位表示的数字也将在其范围内均匀分布。这很明显:如果有15位,允许的范围是0到2^15-1=32767。该范围内的每个数字都是唯一的位模式,例如:

010110101110010

并且如果比特是独立的,则没有模式比任何其他模式更可能发生。因此,该范围内所有可能的数字都有相同的可能性。反之亦然:如果rand()产生均匀分布的整数,那么这些数字是由独立的位组成的。

因此,将rand()看作是一条生产比特的生产线,它恰好以任意大小的批量提供比特。如果您不喜欢大小,请将批分成单独的位,然后按您喜欢的数量将它们放回一起(尽管如果您需要的特定范围不是2的幂,则需要缩小数字,目前最简单的方法是转换为浮点)。

回到你最初的建议,假设你想从15个批次到30个批次,向rand()请求第一个数字,将其移位15位,然后向其添加另一个rand(()。这是一种在不影响均匀分布的情况下组合对rand(的两个调用的方法。它的工作原理很简单,因为放置信息位的位置之间没有重叠。

这与通过乘以常数来“拉伸”rand()的范围非常不同。例如,如果你想将rand()的范围加倍,你可以乘以2,但现在你只能得到偶数,而不能得到奇数!这并不完全是一个平稳的分布,并且可能是一个严重的问题,具体取决于应用程序,例如,假设允许奇数/偶数下注的轮盘游戏。(从位的角度考虑,你可以直观地避免这个错误,因为你会意识到,乘以2等于将位向左移动一位(意义更大),然后用零填补空白。所以很明显,信息量是一样的——只是移动了一点。)

在浮点数应用程序中,数字范围中的这种差距是无法解决的,因为浮点数范围内在地具有根本无法表示的差距:在每两个可表示的浮点数之间的差距中存在无限数量的缺失实数!所以无论如何,我们必须学会与差距共处。

正如其他人所警告的那样,直觉在这一领域是有风险的,特别是因为数学家无法抵抗实数的诱惑,因为实数是一种充满了粗糙的无限和明显的悖论的可怕的令人困惑的东西。

但至少如果你从比特角度来看,你的直觉可能会让你走得更远。比特真的很容易——甚至计算机都能理解。

其他回答

这里有一个简单的答案。考虑垄断。你掷两个六面骰子(对于喜欢游戏符号的人来说是2d6),然后求和。最常见的结果是7,因为有6种可能的方式可以掷7(1,6,5,3,44,3,5,2和6,1)。而2只能在1,1上滚动。很容易看出,掷1d6和掷1d12是不同的,即使范围相同(忽略1d12上可以得到1,点保持不变)。将结果相乘而不是相加会以类似的方式扭曲它们,因为大多数结果都位于范围的中间。如果您试图减少异常值,这是一个好方法,但它无助于使分布均匀。

(奇怪的是,它也会增加低掷。假设你的随机性从0开始,你会看到一个峰值在0,因为它会将其他掷骰变成0。考虑两个介于0和1(包括0和1)之间的随机数,然后相乘。如果其中一个结果为0,则无论其他结果如何,整个结果都将变为0。从中得到1的唯一方法是两卷都是1。在实践中,这可能无关紧要,但这会形成一个奇怪的图形。)

关于“随机性”的一些事情是反直觉的。

假设rand()的平面分布,下面将得到非平面分布:

高偏差:sqrt(rand(范围^2))中间偏差峰值:(rand(range)+rand(range))/2低:偏差:范围-sqrt(rand(范围^2))

有很多其他方法可以创建特定的偏置曲线。我对rand()*rand(()做了一个快速测试,它得到了一个非常非线性的分布。

只是一个澄清

尽管每当你试图发现伪随机变量或其乘法的随机性时,前面的答案都是正确的,但你应该知道,虽然random()通常是均匀分布的,但random(*random)却不是。

实例

这是通过伪随机变量模拟的均匀随机分布样本:

        BarChart[BinCounts[RandomReal[{0, 1}, 50000], 0.01]]

这是两个随机变量相乘后得到的分布:

        BarChart[BinCounts[Table[RandomReal[{0, 1}, 50000] * 
                                 RandomReal[{0, 1}, 50000], {50000}], 0.01]]

所以,两者都是“随机”的,但它们的分布是非常不同的。

另一个例子

当2*Random()均匀分布时:

        BarChart[BinCounts[2 * RandomReal[{0, 1}, 50000], 0.01]]

随机()+随机()不是!

        BarChart[BinCounts[Table[RandomReal[{0, 1}, 50000] + 
                                 RandomReal[{0, 1}, 50000], {50000}], 0.01]]

中心极限定理

中心极限定理指出,随着项的增加,Random()的和趋于正态分布。

只需四个术语即可获得:

BarChart[BinCounts[Table[RandomReal[{0, 1}, 50000] + RandomReal[{0, 1}, 50000] +
                   Table[RandomReal[{0, 1}, 50000] + RandomReal[{0, 1}, 50000],
                   {50000}],
         0.01]]  

在这里,通过将1、2、4、6、10和20个均匀分布的随机变量相加,可以看到从均匀分布到正态分布的道路:

Edit

几个学分

感谢Thomas Ahle在评论中指出,最后两张图片中显示的概率分布称为Irwin Hall分布

感谢Heike出色的撕裂功能

我猜这两种方法都是随机的,尽管我的直觉会说rand()*rand(()不那么随机,因为它会产生更多的零。一旦一个rand()为0,总数即为0

没有比这更随机的了。它要么是随机的,要么不是随机的。随机意味着“难以预测”。这并不意味着不确定性。如果random()是随机的,那么random(()和random(*random)都是随机的。就随机性而言,分布是无关紧要的。如果出现不均匀分布,则意味着某些值比其他值更有可能;它们仍然是不可预测的。由于涉及伪随机性,所以这些数字非常具有确定性。然而,在概率模型和模拟中,伪随机性通常是足够的。众所周知,使伪随机数生成器复杂化只会使其难以分析。不太可能提高随机性;它经常导致它无法通过统计测试。随机数的期望财产很重要:重复性和再现性、统计随机性、(通常)均匀分布和大周期是少数几个。关于随机数上的变换:正如有人所说,两个或多个均匀分布的和产生正态分布。这是加法中心极限定理。无论源分布如何,只要所有分布都是独立和相同的,它都适用。乘性中心极限定理表示两个或多个独立且一致分布的随机变量的乘积是对数正态的。其他人创建的图形看起来是指数型的,但实际上是对数正态的。因此random()*random(()是对数正态分布的(尽管它可能不是独立的,因为数字是从同一个流中提取的)。这在某些应用中可能是期望的。然而,通常最好生成一个随机数并将其转换为对数正态分布数。Random()*Random()可能很难分析。

欲了解更多信息,请访问www.performorama.org查阅我的书。这本书正在建设中,但相关材料已经存在。请注意,章节和章节编号可能会随时间而变化。第8章(概率论)——第8.3.1和8.3.3节,第10章(随机数)。