我无法理解这个,哪个更随机?

rand()

OR:

rand() * rand()

我发现这是一个真正的脑筋急转弯,你能帮我吗?


编辑:

直觉上,我知道数学上的答案是它们是同样随机的,但我不禁想,如果你在将两者相乘时“运行随机数算法”两次,你会创建比只做一次更随机的东西。


当前回答

我们可以通过使用Kolmogorov复杂性如果数字序列不能被压缩,那么它是我们在这个长度上可以达到的最随机的。。。我知道这种测量更多的是理论上的选择。。。

其他回答

很容易证明两个随机数之和不一定是随机的。假设你有一个6面骰子。每个数字有1/6的机会出现。现在假设你有2个骰子,并将结果相加。这些总数的分布不是1/12。为什么?因为某些数字比其他数字更多。它们有多个分区。例如,数字2仅是1+1的和,但7可以由3+4、4+3或5+2等组成,因此它出现的机会更大。

因此,在本例中,对随机函数应用变换(在这种情况下为加法)不会使其更随机,或必然保持随机性。在上述骰子的情况下,分布偏向于7,因此随机性较小。

我们可以通过使用Kolmogorov复杂性如果数字序列不能被压缩,那么它是我们在这个长度上可以达到的最随机的。。。我知道这种测量更多的是理论上的选择。。。

“随机”与“更随机”有点像问哪个零更为零。

在这种情况下,rand是PRNG,所以不是完全随机的。(事实上,如果种子是已知的,那是完全可以预测的)。将其乘以另一个值,使其不再随机。

真正的加密类型RNG实际上是随机的。通过任何类型的函数运行值都不能增加更多的熵,而且很可能会删除熵,使其不再随机。

关于“随机性”的一些事情是反直觉的。

假设rand()的平面分布,下面将得到非平面分布:

高偏差:sqrt(rand(范围^2))中间偏差峰值:(rand(range)+rand(range))/2低:偏差:范围-sqrt(rand(范围^2))

有很多其他方法可以创建特定的偏置曲线。我对rand()*rand(()做了一个快速测试,它得到了一个非常非线性的分布。

好的,所以我会尝试添加一些值来补充其他答案,说你正在创建和使用一个随机数生成器。

随机数发生器是一种具有多种特性的设备(从非常普遍的意义上讲),可以根据需要进行修改。其中一些(来自我)是:

熵:如香农熵分布:统计分布(泊松、正态等)类型:数字的来源(算法、自然事件、组合等)和应用的算法。效率:执行的速度或复杂性。模式:周期、顺序、运行等。也许还有更多。。。

在这里的大多数答案中,分布是主要的关注点,但通过混合和匹配函数和参数,您可以创建生成随机数的新方法,这些随机数将具有不同的特征,其中一些特征乍一看可能不明显。