我无法理解这个,哪个更随机?
rand()
OR:
rand() * rand()
我发现这是一个真正的脑筋急转弯,你能帮我吗?
编辑:
直觉上,我知道数学上的答案是它们是同样随机的,但我不禁想,如果你在将两者相乘时“运行随机数算法”两次,你会创建比只做一次更随机的东西。
我无法理解这个,哪个更随机?
rand()
OR:
rand() * rand()
我发现这是一个真正的脑筋急转弯,你能帮我吗?
编辑:
直觉上,我知道数学上的答案是它们是同样随机的,但我不禁想,如果你在将两者相乘时“运行随机数算法”两次,你会创建比只做一次更随机的东西。
当前回答
事实上,仔细想想rand()*rand(()比rand(。原因如下。
基本上,奇数和偶数的数量相同。假设0.04325是奇数,像0.388是偶数,0.4是偶数,0.15是奇数,
这意味着rand()有相等的机会成为偶数或奇数小数。
另一方面,rand()*rand(()的几率有点不同。让我们说:
double a = rand();
double b = rand();
double c = a * b;
a和b都有50%的几率是偶数或奇数。知道这一点
偶数*偶数=偶数偶数*奇数=偶数奇数*奇数=奇数奇数*偶数=偶数
这意味着c有75%的几率是偶数,而只有25%的几率是奇数,这使得rand()*rand(()的值比rand)更可预测,因此随机性更小。
其他回答
当你对随机数的组合会发生什么感到怀疑时,你可以利用你在统计理论中学到的经验。
在OP的情况下,他想知道X*X=X^2的结果是什么,其中X是沿统一[0,1]分布的随机变量。我们将使用CDF技术,因为它只是一对一映射。
由于X~Uniform[0,1],其cdf为:fX(X)=1我们需要转换Y<-X^2,因此Y=X^2求逆x(y):sqrt(y)=x,这给出了x作为y的函数。接下来,求导数dx/dy:d/dy(sqrt(y))=1/(2sqrt(y)
Y的分布如下:fY(Y)=fX(x(Y))|dx/dy |=1/(2 sqrt(Y)
我们还没有完成,我们必须得到Y的域,因为0<=x<1,0<=x^2<1因此Y在范围[0,1)内。如果你想检查Y的pdf是否真的是pdf,请在域中集成它:从0到1集成1/(2 sqrt(Y)),实际上,它会弹出为1。此外,请注意所述函数的形状看起来像belisarious发布的内容。
至于X1+X2+…+Xn,(其中Xi ~一致[0,1]),我们可以求助于中心极限定理,它适用于存在矩的任何分布。这就是Z检验存在的原因。
用于确定生成的pdf的其他技术包括雅可比变换(这是cdf技术的广义版本)和MGF技术。
编辑:作为澄清,请注意,我所说的是结果转换的分布,而不是其随机性。这实际上是一个单独的讨论。我实际上得到的是(rand())^2。对于rand()*rand((),它要复杂得多,无论如何,这不会导致任何类型的均匀分布。
正如其他人已经指出的那样,这个问题很难回答,因为我们每个人的大脑中都有自己的随机性图景。
这就是为什么,我强烈建议您花一些时间阅读本网站,以更好地了解随机性:
http://www.random.org/
回到真正的问题。在这个术语中没有或多或少的随机性:
两者都只是随机出现的!
在这两种情况下-仅rand()或rand(*rand)-情况相同:在几十亿个数字之后,序列将重复(!)。对观察者来说,它似乎是随机的,因为他不知道整个序列,但计算机没有真正的随机源,所以他也不能产生随机性。
天气是随机的吗?我们没有足够的传感器或知识来确定天气是否随机。
强制性的xkcd。。。
假设rand()返回一个介于[0,1)之间的数字,很明显rand(*rand)将偏向于0。这是因为将x乘以[0,1)之间的数字将得到一个小于x的数字。下面是10000个随机数的分布:
google.charts.load(“current”,{packages:[“corechart”]});google.cacharts.setOnLoadCallback(drawChart);函数drawChart(){变量i;var randomNumbers=[];对于(i=0;i<10000;i++){randomNumbers.push(Math.rrandom()*Math.random());}var chart=新的google.visability.Histogram(document.getElementById(“chart-1”));var data=新的google.visibility.DataTable();data.addColumn(“数字”,“值”);randomNumbers.forEach(函数(randomNumber){data.addRow([randomNumber]);});chart.draw(数据{title:randomNumbers.length+“rand()*rand(值介于[0,1)之间”,图例:{位置:“无”}});}<script src=“https://www.gstatic.com/charts/loader.js“></script><div id=“chart-1”style=“height:500px”>正在生成图表</分区>
如果rand()返回[x,y]之间的整数,则得到以下分布。注意奇数与偶数的数量:
google.charts.load(“current”,{packages:[“corechart”]});google.cacharts.setOnLoadCallback(drawChart);document.querySelector(“#绘制图表”).addEventListener(“单击”,绘制图表);函数randomInt(最小值,最大值){return Math.floor(Math.random()*(max-min+1))+min;}函数drawChart(){var min=编号(document.querySelector(“#rand min”).value);var max=编号(document.querySelector(“#rand max”).value);如果(最小值>=最大值){回来}变量i;var randomNumbers=[];对于(i=0;i<10000;i++){randomNumbers.push(randomInt(最小,最大)*randomInt(最小,最小));}var chart=新的google.visability.Histogram(document.getElementById(“chart-1”));var data=新的google.visibility.DataTable();data.addColumn(“数字”,“值”);randomNumbers.forEach(函数(randomNumber){data.addRow([randomNumber]);});chart.draw(数据{title:randomNumbers.length+“rand()*rand(()值介于[“+min+”,“+max+”]”之间,图例:{位置:“无”},直方图:{bucketSize:1}});}<script src=“https://www.gstatic.com/charts/loader.js“></script><input-type=“number”id=“rand-min”value=“0”min=“0“max=“10”><input type=“number”id=“rand max”value=“9”min=“0”max=“10”><input type=“button”id=“draw chart”value=“Apply”><div id=“chart-1”style=“height:500px”>正在生成图表</分区>
浮动随机数通常基于一种算法,该算法产生一个介于零和一定范围之间的整数。因此,通过使用rand()*rand((),您实际上是在说int_rand()*int_rand()/rand_max ^2-这意味着您排除了任何素数/rand_max^2。
这显著改变了随机分布。
rand()在大多数系统中都是均匀分布的,如果正确播种,很难预测。除非你有特殊的理由对其进行数学运算(例如,将分布成形为所需的曲线),否则使用该方法。