我无法理解这个,哪个更随机?
rand()
OR:
rand() * rand()
我发现这是一个真正的脑筋急转弯,你能帮我吗?
编辑:
直觉上,我知道数学上的答案是它们是同样随机的,但我不禁想,如果你在将两者相乘时“运行随机数算法”两次,你会创建比只做一次更随机的东西。
我无法理解这个,哪个更随机?
rand()
OR:
rand() * rand()
我发现这是一个真正的脑筋急转弯,你能帮我吗?
编辑:
直觉上,我知道数学上的答案是它们是同样随机的,但我不禁想,如果你在将两者相乘时“运行随机数算法”两次,你会创建比只做一次更随机的东西。
当前回答
过度简化以说明一点。
假设随机函数只输出0或1。
random()是(0,1)之一,但random(()*random(是(0,0,0,1)之一
你可以清楚地看到,在第二种情况下,获得0的机会绝不等于获得1的机会。
当我第一次发布这个答案时,我希望尽可能简短,以便阅读它的人一眼就能理解random()和random(*random)之间的区别,但我无法阻止自己回答最初的广告垃圾问题:
哪个更随机?
如果random()、random(()*random()、random()+random(()、(random(+1)/2或任何其他不会导致固定结果的组合具有相同的熵源(或者在伪随机生成器的情况下具有相同的初始状态),那么答案将是它们具有相同的随机性(差异在于它们的分布)。我们可以看到的一个完美的例子是Craps游戏。你得到的数字将是随机的(1,6)+随机的(6,6),我们都知道得到7的几率最高,但这并不意味着掷两个骰子的结果比掷一个骰子的效果更随机。
其他回答
我们可以通过使用Kolmogorov复杂性如果数字序列不能被压缩,那么它是我们在这个长度上可以达到的最随机的。。。我知道这种测量更多的是理论上的选择。。。
事实上,仔细想想rand()*rand(()比rand(。原因如下。
基本上,奇数和偶数的数量相同。假设0.04325是奇数,像0.388是偶数,0.4是偶数,0.15是奇数,
这意味着rand()有相等的机会成为偶数或奇数小数。
另一方面,rand()*rand(()的几率有点不同。让我们说:
double a = rand();
double b = rand();
double c = a * b;
a和b都有50%的几率是偶数或奇数。知道这一点
偶数*偶数=偶数偶数*奇数=偶数奇数*奇数=奇数奇数*偶数=偶数
这意味着c有75%的几率是偶数,而只有25%的几率是奇数,这使得rand()*rand(()的值比rand)更可预测,因此随机性更小。
好的,所以我会尝试添加一些值来补充其他答案,说你正在创建和使用一个随机数生成器。
随机数发生器是一种具有多种特性的设备(从非常普遍的意义上讲),可以根据需要进行修改。其中一些(来自我)是:
熵:如香农熵分布:统计分布(泊松、正态等)类型:数字的来源(算法、自然事件、组合等)和应用的算法。效率:执行的速度或复杂性。模式:周期、顺序、运行等。也许还有更多。。。
在这里的大多数答案中,分布是主要的关注点,但通过混合和匹配函数和参数,您可以创建生成随机数的新方法,这些随机数将具有不同的特征,其中一些特征乍一看可能不明显。
只是一个澄清
尽管每当你试图发现伪随机变量或其乘法的随机性时,前面的答案都是正确的,但你应该知道,虽然random()通常是均匀分布的,但random(*random)却不是。
实例
这是通过伪随机变量模拟的均匀随机分布样本:
BarChart[BinCounts[RandomReal[{0, 1}, 50000], 0.01]]
这是两个随机变量相乘后得到的分布:
BarChart[BinCounts[Table[RandomReal[{0, 1}, 50000] *
RandomReal[{0, 1}, 50000], {50000}], 0.01]]
所以,两者都是“随机”的,但它们的分布是非常不同的。
另一个例子
当2*Random()均匀分布时:
BarChart[BinCounts[2 * RandomReal[{0, 1}, 50000], 0.01]]
随机()+随机()不是!
BarChart[BinCounts[Table[RandomReal[{0, 1}, 50000] +
RandomReal[{0, 1}, 50000], {50000}], 0.01]]
中心极限定理
中心极限定理指出,随着项的增加,Random()的和趋于正态分布。
只需四个术语即可获得:
BarChart[BinCounts[Table[RandomReal[{0, 1}, 50000] + RandomReal[{0, 1}, 50000] +
Table[RandomReal[{0, 1}, 50000] + RandomReal[{0, 1}, 50000],
{50000}],
0.01]]
在这里,通过将1、2、4、6、10和20个均匀分布的随机变量相加,可以看到从均匀分布到正态分布的道路:
Edit
几个学分
感谢Thomas Ahle在评论中指出,最后两张图片中显示的概率分布称为Irwin Hall分布
感谢Heike出色的撕裂功能
这里有一个简单的答案。考虑垄断。你掷两个六面骰子(对于喜欢游戏符号的人来说是2d6),然后求和。最常见的结果是7,因为有6种可能的方式可以掷7(1,6,5,3,44,3,5,2和6,1)。而2只能在1,1上滚动。很容易看出,掷1d6和掷1d12是不同的,即使范围相同(忽略1d12上可以得到1,点保持不变)。将结果相乘而不是相加会以类似的方式扭曲它们,因为大多数结果都位于范围的中间。如果您试图减少异常值,这是一个好方法,但它无助于使分布均匀。
(奇怪的是,它也会增加低掷。假设你的随机性从0开始,你会看到一个峰值在0,因为它会将其他掷骰变成0。考虑两个介于0和1(包括0和1)之间的随机数,然后相乘。如果其中一个结果为0,则无论其他结果如何,整个结果都将变为0。从中得到1的唯一方法是两卷都是1。在实践中,这可能无关紧要,但这会形成一个奇怪的图形。)