我无法理解这个,哪个更随机?

rand()

OR:

rand() * rand()

我发现这是一个真正的脑筋急转弯,你能帮我吗?


编辑:

直觉上,我知道数学上的答案是它们是同样随机的,但我不禁想,如果你在将两者相乘时“运行随机数算法”两次,你会创建比只做一次更随机的东西。


当前回答

过度简化以说明一点。

假设随机函数只输出0或1。

random()是(0,1)之一,但random(()*random(是(0,0,0,1)之一

你可以清楚地看到,在第二种情况下,获得0的机会绝不等于获得1的机会。


当我第一次发布这个答案时,我希望尽可能简短,以便阅读它的人一眼就能理解random()和random(*random)之间的区别,但我无法阻止自己回答最初的广告垃圾问题:

哪个更随机?

如果random()、random(()*random()、random()+random(()、(random(+1)/2或任何其他不会导致固定结果的组合具有相同的熵源(或者在伪随机生成器的情况下具有相同的初始状态),那么答案将是它们具有相同的随机性(差异在于它们的分布)。我们可以看到的一个完美的例子是Craps游戏。你得到的数字将是随机的(1,6)+随机的(6,6),我们都知道得到7的几率最高,但这并不意味着掷两个骰子的结果比掷一个骰子的效果更随机。

其他回答

公认的答案很好,但有另一种方法可以回答你的问题。PachydermPuncher的答案已经采用了这种替代方法,我只是将其扩展一点。

思考信息理论最简单的方法是用最小的信息单位,一个比特。

在C标准库中,rand()返回一个0到rand_MAX范围内的整数,根据平台的不同,这个限制可能会有不同的定义。假设RAND_MAX恰好被定义为2^n-1,其中n是某个整数(这恰好是Microsoft实现中的情况,其中n为15)。然后我们可以说,一个好的实现将返回n位信息。

想象一下,rand()通过翻转硬币找到一位的值来构造随机数,然后重复直到它有一批15位。然后,这些位是独立的(任何一个位的值都不会影响同一批中其他位具有特定值的可能性)。因此,独立考虑的每个比特都像一个介于0和1之间的随机数,并且在该范围内“均匀分布”(可能是0和1)。

位的独立性确保了由一批位表示的数字也将在其范围内均匀分布。这很明显:如果有15位,允许的范围是0到2^15-1=32767。该范围内的每个数字都是唯一的位模式,例如:

010110101110010

并且如果比特是独立的,则没有模式比任何其他模式更可能发生。因此,该范围内所有可能的数字都有相同的可能性。反之亦然:如果rand()产生均匀分布的整数,那么这些数字是由独立的位组成的。

因此,将rand()看作是一条生产比特的生产线,它恰好以任意大小的批量提供比特。如果您不喜欢大小,请将批分成单独的位,然后按您喜欢的数量将它们放回一起(尽管如果您需要的特定范围不是2的幂,则需要缩小数字,目前最简单的方法是转换为浮点)。

回到你最初的建议,假设你想从15个批次到30个批次,向rand()请求第一个数字,将其移位15位,然后向其添加另一个rand(()。这是一种在不影响均匀分布的情况下组合对rand(的两个调用的方法。它的工作原理很简单,因为放置信息位的位置之间没有重叠。

这与通过乘以常数来“拉伸”rand()的范围非常不同。例如,如果你想将rand()的范围加倍,你可以乘以2,但现在你只能得到偶数,而不能得到奇数!这并不完全是一个平稳的分布,并且可能是一个严重的问题,具体取决于应用程序,例如,假设允许奇数/偶数下注的轮盘游戏。(从位的角度考虑,你可以直观地避免这个错误,因为你会意识到,乘以2等于将位向左移动一位(意义更大),然后用零填补空白。所以很明显,信息量是一样的——只是移动了一点。)

在浮点数应用程序中,数字范围中的这种差距是无法解决的,因为浮点数范围内在地具有根本无法表示的差距:在每两个可表示的浮点数之间的差距中存在无限数量的缺失实数!所以无论如何,我们必须学会与差距共处。

正如其他人所警告的那样,直觉在这一领域是有风险的,特别是因为数学家无法抵抗实数的诱惑,因为实数是一种充满了粗糙的无限和明显的悖论的可怕的令人困惑的东西。

但至少如果你从比特角度来看,你的直觉可能会让你走得更远。比特真的很容易——甚至计算机都能理解。

我猜这两种方法都是随机的,尽管我的直觉会说rand()*rand(()不那么随机,因为它会产生更多的零。一旦一个rand()为0,总数即为0

只是一个澄清

尽管每当你试图发现伪随机变量或其乘法的随机性时,前面的答案都是正确的,但你应该知道,虽然random()通常是均匀分布的,但random(*random)却不是。

实例

这是通过伪随机变量模拟的均匀随机分布样本:

        BarChart[BinCounts[RandomReal[{0, 1}, 50000], 0.01]]

这是两个随机变量相乘后得到的分布:

        BarChart[BinCounts[Table[RandomReal[{0, 1}, 50000] * 
                                 RandomReal[{0, 1}, 50000], {50000}], 0.01]]

所以,两者都是“随机”的,但它们的分布是非常不同的。

另一个例子

当2*Random()均匀分布时:

        BarChart[BinCounts[2 * RandomReal[{0, 1}, 50000], 0.01]]

随机()+随机()不是!

        BarChart[BinCounts[Table[RandomReal[{0, 1}, 50000] + 
                                 RandomReal[{0, 1}, 50000], {50000}], 0.01]]

中心极限定理

中心极限定理指出,随着项的增加,Random()的和趋于正态分布。

只需四个术语即可获得:

BarChart[BinCounts[Table[RandomReal[{0, 1}, 50000] + RandomReal[{0, 1}, 50000] +
                   Table[RandomReal[{0, 1}, 50000] + RandomReal[{0, 1}, 50000],
                   {50000}],
         0.01]]  

在这里,通过将1、2、4、6、10和20个均匀分布的随机变量相加,可以看到从均匀分布到正态分布的道路:

Edit

几个学分

感谢Thomas Ahle在评论中指出,最后两张图片中显示的概率分布称为Irwin Hall分布

感谢Heike出色的撕裂功能

浮动随机数通常基于一种算法,该算法产生一个介于零和一定范围之间的整数。因此,通过使用rand()*rand((),您实际上是在说int_rand()*int_rand()/rand_max ^2-这意味着您排除了任何素数/rand_max^2。

这显著改变了随机分布。

rand()在大多数系统中都是均匀分布的,如果正确播种,很难预测。除非你有特殊的理由对其进行数学运算(例如,将分布成形为所需的曲线),否则使用该方法。

“随机”与“更随机”有点像问哪个零更为零。

在这种情况下,rand是PRNG,所以不是完全随机的。(事实上,如果种子是已知的,那是完全可以预测的)。将其乘以另一个值,使其不再随机。

真正的加密类型RNG实际上是随机的。通过任何类型的函数运行值都不能增加更多的熵,而且很可能会删除熵,使其不再随机。