我无法理解这个,哪个更随机?

rand()

OR:

rand() * rand()

我发现这是一个真正的脑筋急转弯,你能帮我吗?


编辑:

直觉上,我知道数学上的答案是它们是同样随机的,但我不禁想,如果你在将两者相乘时“运行随机数算法”两次,你会创建比只做一次更随机的东西。


当前回答

很容易证明两个随机数之和不一定是随机的。假设你有一个6面骰子。每个数字有1/6的机会出现。现在假设你有2个骰子,并将结果相加。这些总数的分布不是1/12。为什么?因为某些数字比其他数字更多。它们有多个分区。例如,数字2仅是1+1的和,但7可以由3+4、4+3或5+2等组成,因此它出现的机会更大。

因此,在本例中,对随机函数应用变换(在这种情况下为加法)不会使其更随机,或必然保持随机性。在上述骰子的情况下,分布偏向于7,因此随机性较小。

其他回答

这不是很明显,但rand()通常比rand(*rand)更随机。重要的是,对于大多数用途来说,这实际上不是很重要。

但首先,它们产生了不同的分布。如果这是你想要的,这不是问题,但这很重要。如果你需要一个特定的分布,那么忽略整个“哪个更随机”的问题。那么为什么rand()更随机呢?

rand()之所以更随机(假设它产生的是[0..1]范围内的浮点随机数,这是非常常见的)的核心是,当你将两个FP数与尾数中的大量信息相乘时,你会在结尾处丢失一些信息;IEEE双精度浮点中没有足够的位来保存从[0..1]中均匀随机选择的两个IEEE双精度浮点数中的所有信息,这些额外的信息位将丢失。当然,这无关紧要,因为你(可能)不会使用这些信息,但损失是真实的。您产生哪种分布(即,使用哪种操作进行组合)也并不重要。这些随机数中的每一个都有(最多)52位随机信息——这就是IEEE双精度的容量——如果你将两个或多个随机数合并为一个,那么你仍然只能拥有最多52位的随机信息。

大多数随机数的使用甚至没有使用随机源中实际可用的那么多随机性。得到一个好的PRNG,不要太担心它。(“好”的程度取决于你在用它做什么;你在做蒙特卡洛模拟或密码学时必须小心,否则你可能会使用标准PRNG,因为这通常要快得多。)

用更离散的数字来考虑可能会有所帮助。考虑一下要生成1到36之间的随机数,所以您决定最简单的方法是投掷两个公平的6面骰子。你得到了这个:

     1    2    3    4    5    6
  -----------------------------
1|   1    2    3    4    5    6
2|   2    4    6    8   10   12
3|   3    6    9   12   15   18
4|   4    8   12   16   20   24   
5|   5   10   15   20   25   30
6|   6   12   18   24   30   36

所以我们有36个数字,但并不是所有数字都得到了公平的表示,有些数字根本没有出现。靠近中心对角线(左下角到右上角)的数字将以最高频率出现。

描述骰子之间不公平分布的相同原则同样适用于0.0和1.0之间的浮点数。

我们可以通过使用Kolmogorov复杂性如果数字序列不能被压缩,那么它是我们在这个长度上可以达到的最随机的。。。我知道这种测量更多的是理论上的选择。。。

正如其他人所说,简单的简短答案是:不,它不是更随机的,但它确实改变了分布。

假设你在玩骰子游戏。你有一些完全公平的随机骰子。如果在每次掷骰子之前,你先把两个骰子放在一个碗里,摇晃它,随机选一个骰子,然后掷那一个,掷骰子会更随机吗?显然,这不会有什么不同。如果两个骰子都给出了随机数字,那么从两个骰子中随机选择一个不会有任何区别。无论哪种方式,你都会得到一个介于1和6之间的随机数,在足够数量的卷上均匀分布。

我想在现实生活中,如果你怀疑骰子可能不公平,这样的程序可能会有用。例如,如果骰子稍微不平衡,那么一个骰子往往比1/6的时间更频繁地给出1,而另一个骰子则往往异常频繁地给出6,那么在这两个骰子之间随机选择将有助于掩盖偏差。(尽管在这种情况下,1和6仍然比2、3、4和5多。嗯,我想这取决于失衡的性质。)

随机性有很多定义。随机序列的一个定义是,它是由随机过程产生的一系列数字。根据这个定义,如果我掷一个公平骰子5次,得到数字2、4、3、2、5,那就是一个随机序列。如果我再掷同样的骰子5次,得到1,1,1、1,1和1,那么这也是一个随机序列。

一些海报指出,计算机上的随机函数不是真正随机的,而是伪随机的,如果你知道算法和种子,它们是完全可预测的。这是真的,但大多数时候是完全无关的。如果我洗牌,然后一次翻一张,这应该是一个随机系列。如果有人偷看卡片,结果将是完全可预测的,但根据大多数随机性的定义,这并不会减少随机性。如果该系列通过了随机性统计测试,我偷看卡片的事实不会改变这一事实。在实践中,如果我们在赌你猜下一张牌的能力,那么你偷看这些牌的事实是非常重要的。如果我们使用该系列来模拟访问我们网站的访客的菜单选择,以测试系统的性能,那么你偷看的事实将毫无区别。(只要您不修改程序以利用这些知识。)

EDIT

我认为我无法将我对蒙蒂霍尔问题的回应变成评论,所以我会更新我的答案。

对于那些没有阅读Belisarius链接的人来说,其要点是:游戏节目参赛者可以选择3个门。在一个人的背后是有价值的奖品,在其他人的背后是毫无价值的东西。他选了1号门。在揭示它是赢家还是输家之前,主持人打开3号门,揭示它是输家。然后,他给了参赛者切换到2号门的机会。参赛者是否应该这样做?

答案是,他应该改变,这违背了许多人的直觉。他最初选择的获胜者的概率是1/3,而另一个门获胜的概率是2/3。我和许多其他人的直觉一样,最初的直觉是,切换不会有任何好处,赔率刚刚改为50:50。

毕竟,假设有人在主持人打开丢失的门后打开了电视。那个人会看到剩下的两扇紧闭的门。假设他知道游戏的性质,他会说每个门都有1/2的机会隐藏奖品。观众的赔率是1/2:1/2,而参赛者的赔率却是1/3:2/3?

我真的不得不考虑这一点,才能让我的直觉成形。要了解它,请理解,当我们讨论像这样的问题中的概率时,我们的意思是,在给定可用信息的情况下,您分配的概率。对于将奖品放在1号门后面的工作人员来说,奖品在1号门后的概率为100%,而在其他两个门后面的概率为零。

机组成员的赔率与参赛者的赔率不同,因为他知道参赛者不知道的东西,即他把奖品放在了哪个门后面。同样,竞争对手的赔率与观众的赔率不同,因为他知道观众不知道的东西,即他最初选择了哪扇门。这并不是无关紧要的,因为主人选择打开哪扇门并不是随机的。他不会打开选手选的门,也不会打开隐藏奖品的门。如果这是同一扇门,他就有两个选择。如果它们是不同的门,那么只剩下一扇门。

那么我们如何得出1/3和2/3?当参赛者最初选择一扇门时,他有1/3的机会选择获胜者。我认为这是显而易见的。这意味着有2/3的机会,其他门中的一个获胜。如果东道主给他机会在不提供任何额外信息的情况下进行切换,那就不会有任何收获。同样,这应该是显而易见的。但有一种看法是,他有2/3的机会通过换人获胜。但他有两个选择。因此,每一个人只有2/3除以2=1/3的机会成为赢家,这并不比他最初的选择更好。当然,我们已经知道最终结果,这只是以不同的方式计算。

但现在主持人透露,这两个选择中的一个不是赢家。因此,对于他没有选择的门有2/3的机会获胜,他现在知道,2个备选方案中的1个不是。另一个可能是,也可能不是。因此,他不再有2/3除以2。他打开的门为零,关闭的门为2/3。

好的,所以我会尝试添加一些值来补充其他答案,说你正在创建和使用一个随机数生成器。

随机数发生器是一种具有多种特性的设备(从非常普遍的意义上讲),可以根据需要进行修改。其中一些(来自我)是:

熵:如香农熵分布:统计分布(泊松、正态等)类型:数字的来源(算法、自然事件、组合等)和应用的算法。效率:执行的速度或复杂性。模式:周期、顺序、运行等。也许还有更多。。。

在这里的大多数答案中,分布是主要的关注点,但通过混合和匹配函数和参数,您可以创建生成随机数的新方法,这些随机数将具有不同的特征,其中一些特征乍一看可能不明显。