在Python Pandas中,检查DataFrame是否有一个(或多个)NaN值的最佳方法是什么?
我知道函数pd。isnan,但这将返回每个元素的布尔值的DataFrame。这篇文章也没有完全回答我的问题。
在Python Pandas中,检查DataFrame是否有一个(或多个)NaN值的最佳方法是什么?
我知道函数pd。isnan,但这将返回每个元素的布尔值的DataFrame。这篇文章也没有完全回答我的问题。
你有两个选择。
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(10,6))
# Make a few areas have NaN values
df.iloc[1:3,1] = np.nan
df.iloc[5,3] = np.nan
df.iloc[7:9,5] = np.nan
现在数据帧看起来是这样的:
0 1 2 3 4 5
0 0.520113 0.884000 1.260966 -0.236597 0.312972 -0.196281
1 -0.837552 NaN 0.143017 0.862355 0.346550 0.842952
2 -0.452595 NaN -0.420790 0.456215 1.203459 0.527425
3 0.317503 -0.917042 1.780938 -1.584102 0.432745 0.389797
4 -0.722852 1.704820 -0.113821 -1.466458 0.083002 0.011722
5 -0.622851 -0.251935 -1.498837 NaN 1.098323 0.273814
6 0.329585 0.075312 -0.690209 -3.807924 0.489317 -0.841368
7 -1.123433 -1.187496 1.868894 -2.046456 -0.949718 NaN
8 1.133880 -0.110447 0.050385 -1.158387 0.188222 NaN
9 -0.513741 1.196259 0.704537 0.982395 -0.585040 -1.693810
选项1:df.isnull().any().any() -返回一个布尔值
你知道isnull()会返回一个这样的数据框架:
0 1 2 3 4 5
0 False False False False False False
1 False True False False False False
2 False True False False False False
3 False False False False False False
4 False False False False False False
5 False False False True False False
6 False False False False False False
7 False False False False False True
8 False False False False False True
9 False False False False False False
如果你让它df.isnull().any(),你可以找到只有NaN值的列:
0 False
1 True
2 False
3 True
4 False
5 True
dtype: bool
还有一个.any()会告诉你上面的任何一个是否为True
> df.isnull().any().any()
True
选项2:df.isnull().sum().sum() -返回NaN值总数的整数:
它的操作方式与.any().any()相同,首先给出一列中NaN值数量的总和,然后是这些值的总和:
df.isnull().sum()
0 0
1 2
2 0
3 1
4 0
5 2
dtype: int64
最后,要获得DataFrame中NaN值的总数:
df.isnull().sum().sum()
5
Jwilner的回答是正确的。我正在探索是否有更快的选择,因为根据我的经验,平坦数组的和(奇怪地)比计数快。这段代码似乎更快:
df.isnull().values.any()
import numpy as np
import pandas as pd
import perfplot
def setup(n):
df = pd.DataFrame(np.random.randn(n))
df[df > 0.9] = np.nan
return df
def isnull_any(df):
return df.isnull().any()
def isnull_values_sum(df):
return df.isnull().values.sum() > 0
def isnull_sum(df):
return df.isnull().sum() > 0
def isnull_values_any(df):
return df.isnull().values.any()
perfplot.save(
"out.png",
setup=setup,
kernels=[isnull_any, isnull_values_sum, isnull_sum, isnull_values_any],
n_range=[2 ** k for k in range(25)],
)
df.isnull().sum().sum()有点慢,但当然,它有额外的信息——nan的数量。
根据您正在处理的数据类型,您还可以在执行EDA时通过将dropna设置为False来获得每列的值计数。
for col in df:
print df[col].value_counts(dropna=False)
适用于分类变量,但当你有很多唯一值时就不那么适用了。
如果你需要知道有多少行有“一个或多个nan”:
df.isnull().T.any().T.sum()
或者如果你需要取出这些行并检查它们:
nan_rows = df[df.isnull().T.any()]
由于pandas必须为DataFrame.dropna()找到这一点,我看了看他们是如何实现它的,并发现他们使用了DataFrame.count(),它会计数DataFrame中的所有非空值。参考熊猫源代码。我还没有对这种技术进行基准测试,但我认为库的作者可能已经就如何实现它做出了明智的选择。
因为没有人提到,还有另一个变量叫做hasnans。
df[我]。如果pandas系列中的一个或多个值为NaN, hasnans将输出为True,否则为False。注意,它不是一个函数。
熊猫版本“0.19.2”和“0.20.2”
加上霍布斯的精彩回答,我对Python和熊猫很陌生,所以如果我错了,请指出来。
要找出哪些行有nan:
nan_rows = df[df.isnull().any(1)]
将执行相同的操作,而不需要通过将any()的轴指定为1来检查'True'是否在行中存在。
或者你可以在DF上使用.info(),例如:
df.info(null_counts=True)返回列中非_null的行数,例如:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 3276314 entries, 0 to 3276313
Data columns (total 10 columns):
n_matches 3276314 non-null int64
avg_pic_distance 3276314 non-null float64
下面是另一种有趣的查找null并替换为计算值的方法
#Creating the DataFrame
testdf = pd.DataFrame({'Tenure':[1,2,3,4,5],'Monthly':[10,20,30,40,50],'Yearly':[10,40,np.nan,np.nan,250]})
>>> testdf2
Monthly Tenure Yearly
0 10 1 10.0
1 20 2 40.0
2 30 3 NaN
3 40 4 NaN
4 50 5 250.0
#Identifying the rows with empty columns
nan_rows = testdf2[testdf2['Yearly'].isnull()]
>>> nan_rows
Monthly Tenure Yearly
2 30 3 NaN
3 40 4 NaN
#Getting the rows# into a list
>>> index = list(nan_rows.index)
>>> index
[2, 3]
# Replacing null values with calculated value
>>> for i in index:
testdf2['Yearly'][i] = testdf2['Monthly'][i] * testdf2['Tenure'][i]
>>> testdf2
Monthly Tenure Yearly
0 10 1 10.0
1 20 2 40.0
2 30 3 90.0
3 40 4 160.0
4 50 5 250.0
df.isna().any(axis=None)
从v0.23.2开始,您可以使用DataFrame。isna + DataFrame.any(axis=None),其中axis=None指定整个DataFrame的逻辑缩减。
# Setup
df = pd.DataFrame({'A': [1, 2, np.nan], 'B' : [np.nan, 4, 5]})
df
A B
0 1.0 NaN
1 2.0 4.0
2 NaN 5.0
df.isna()
A B
0 False True
1 False False
2 True False
df.isna().any(axis=None)
# True
有用的替代方案
numpy.isnan 如果您正在运行旧版本的pandas,则另一个性能选项。
np.isnan(df.values)
array([[False, True],
[False, False],
[ True, False]])
np.isnan(df.values).any()
# True
或者,检查和:
np.isnan(df.values).sum()
# 2
np.isnan(df.values).sum() > 0
# True
Series.hasnans 你也可以迭代地调用Series.hasnans。例如,要检查单个列是否有nan,
df['A'].hasnans
# True
要检查任何列是否具有nan,可以对any使用推导式(这是一种短路操作)。
any(df[c].hasnans for c in df)
# True
这实际上非常快。
我一直在使用以下和类型转换为字符串,并检查nan值
(str(df.at[index, 'column']) == 'nan')
这允许我检查一个系列中的特定值,而不只是返回如果它包含在系列中的某个地方。
最好的方法是:
df.isna().any().any()
原因如下。所以isna()被用来定义isnull(),但这两者当然是相同的。
这甚至比公认的答案还要快,并且涵盖了所有2D熊猫数组。
df为Pandas数据框架的名称,任意值为numpy。Nan为空值。
如果你想查看哪些列有空,哪些没有(只有True和False) .any df.isnull () () 如果您只想查看有空值的列 df。loc [: df.isnull () .any ()] .columns 如果您想查看每一列中null的计数 .sum df.isna () () 如果您想查看每一列中空的百分比 .sum df.isna () () / (len (df)) * 100 如果你想查看只有空值的列中空值的百分比:
df.loc[:,list(df.loc[:,df.isnull().any()].columns)].isnull().sum()/(len(df))*100
编辑1:
如果你想从视觉上看到数据缺失的地方:
import missingno
missingdata_df = df.columns[df.isnull().any()].tolist()
missingno.matrix(df[missingdata_df])
你不仅可以检查是否有'NaN'存在,还可以使用下面的方法得到'NaN'在每一列中的百分比,
df = pd.DataFrame({'col1':[1,2,3,4,5],'col2':[6,np.nan,8,9,10]})
df
col1 col2
0 1 6.0
1 2 NaN
2 3 8.0
3 4 9.0
4 5 10.0
df.isnull().sum()/len(df)
col1 0.0
col2 0.2
dtype: float64
我们可以通过使用seaborn moduleheatmap生成热图来查看数据集中存在的空值
import pandas as pd
import seaborn as sns
dataset=pd.read_csv('train.csv')
sns.heatmap(dataset.isnull(),cbar=False)
我建议使用值属性作为数组的计算是更快的。
arr = np.random.randn(100, 100)
arr[40, 40] = np.nan
df = pd.DataFrame(arr)
%timeit np.isnan(df.values).any() # 7.56 µs
%timeit np.isnan(df).any() # 627 µs
%timeit df.isna().any(axis=None) # 572 µs
结果:
7.56 µs ± 447 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
627 µs ± 40.3 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
572 µs ± 15.3 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
注意:你需要在Jupyter笔记本上运行%timeit才能工作
条形表示缺少的值
import missingno
missingno.bar(df)# will give you exact no of values and values missing