在Python Pandas中,检查DataFrame是否有一个(或多个)NaN值的最佳方法是什么?
我知道函数pd。isnan,但这将返回每个元素的布尔值的DataFrame。这篇文章也没有完全回答我的问题。
在Python Pandas中,检查DataFrame是否有一个(或多个)NaN值的最佳方法是什么?
我知道函数pd。isnan,但这将返回每个元素的布尔值的DataFrame。这篇文章也没有完全回答我的问题。
当前回答
import missingno as msno
msno.matrix(df) # just to visualize. no missing value.
其他回答
最好的方法是:
df.isna().any().any()
原因如下。所以isna()被用来定义isnull(),但这两者当然是相同的。
这甚至比公认的答案还要快,并且涵盖了所有2D熊猫数组。
条形表示缺少的值
import missingno
missingno.bar(df)# will give you exact no of values and values missing
加上霍布斯的精彩回答,我对Python和熊猫很陌生,所以如果我错了,请指出来。
要找出哪些行有nan:
nan_rows = df[df.isnull().any(1)]
将执行相同的操作,而不需要通过将any()的轴指定为1来检查'True'是否在行中存在。
如果你需要知道有多少行有“一个或多个nan”:
df.isnull().T.any().T.sum()
或者如果你需要取出这些行并检查它们:
nan_rows = df[df.isnull().T.any()]
import missingno as msno
msno.matrix(df) # just to visualize. no missing value.