在Python Pandas中,检查DataFrame是否有一个(或多个)NaN值的最佳方法是什么?
我知道函数pd。isnan,但这将返回每个元素的布尔值的DataFrame。这篇文章也没有完全回答我的问题。
在Python Pandas中,检查DataFrame是否有一个(或多个)NaN值的最佳方法是什么?
我知道函数pd。isnan,但这将返回每个元素的布尔值的DataFrame。这篇文章也没有完全回答我的问题。
当前回答
import missingno as msno
msno.matrix(df) # just to visualize. no missing value.
其他回答
Jwilner的回答是正确的。我正在探索是否有更快的选择,因为根据我的经验,平坦数组的和(奇怪地)比计数快。这段代码似乎更快:
df.isnull().values.any()
import numpy as np
import pandas as pd
import perfplot
def setup(n):
df = pd.DataFrame(np.random.randn(n))
df[df > 0.9] = np.nan
return df
def isnull_any(df):
return df.isnull().any()
def isnull_values_sum(df):
return df.isnull().values.sum() > 0
def isnull_sum(df):
return df.isnull().sum() > 0
def isnull_values_any(df):
return df.isnull().values.any()
perfplot.save(
"out.png",
setup=setup,
kernels=[isnull_any, isnull_values_sum, isnull_sum, isnull_values_any],
n_range=[2 ** k for k in range(25)],
)
df.isnull().sum().sum()有点慢,但当然,它有额外的信息——nan的数量。
根据您正在处理的数据类型,您还可以在执行EDA时通过将dropna设置为False来获得每列的值计数。
for col in df:
print df[col].value_counts(dropna=False)
适用于分类变量,但当你有很多唯一值时就不那么适用了。
你不仅可以检查是否有'NaN'存在,还可以使用下面的方法得到'NaN'在每一列中的百分比,
df = pd.DataFrame({'col1':[1,2,3,4,5],'col2':[6,np.nan,8,9,10]})
df
col1 col2
0 1 6.0
1 2 NaN
2 3 8.0
3 4 9.0
4 5 10.0
df.isnull().sum()/len(df)
col1 0.0
col2 0.2
dtype: float64
这将只包括至少有一个null/na值的列。
df.isnull().sum()[df.isnull().sum()>0]
由于pandas必须为DataFrame.dropna()找到这一点,我看了看他们是如何实现它的,并发现他们使用了DataFrame.count(),它会计数DataFrame中的所有非空值。参考熊猫源代码。我还没有对这种技术进行基准测试,但我认为库的作者可能已经就如何实现它做出了明智的选择。