在Python Pandas中,检查DataFrame是否有一个(或多个)NaN值的最佳方法是什么?
我知道函数pd。isnan,但这将返回每个元素的布尔值的DataFrame。这篇文章也没有完全回答我的问题。
在Python Pandas中,检查DataFrame是否有一个(或多个)NaN值的最佳方法是什么?
我知道函数pd。isnan,但这将返回每个元素的布尔值的DataFrame。这篇文章也没有完全回答我的问题。
当前回答
df.isna().any(axis=None)
从v0.23.2开始,您可以使用DataFrame。isna + DataFrame.any(axis=None),其中axis=None指定整个DataFrame的逻辑缩减。
# Setup
df = pd.DataFrame({'A': [1, 2, np.nan], 'B' : [np.nan, 4, 5]})
df
A B
0 1.0 NaN
1 2.0 4.0
2 NaN 5.0
df.isna()
A B
0 False True
1 False False
2 True False
df.isna().any(axis=None)
# True
有用的替代方案
numpy.isnan 如果您正在运行旧版本的pandas,则另一个性能选项。
np.isnan(df.values)
array([[False, True],
[False, False],
[ True, False]])
np.isnan(df.values).any()
# True
或者,检查和:
np.isnan(df.values).sum()
# 2
np.isnan(df.values).sum() > 0
# True
Series.hasnans 你也可以迭代地调用Series.hasnans。例如,要检查单个列是否有nan,
df['A'].hasnans
# True
要检查任何列是否具有nan,可以对any使用推导式(这是一种短路操作)。
any(df[c].hasnans for c in df)
# True
这实际上非常快。
其他回答
由于pandas必须为DataFrame.dropna()找到这一点,我看了看他们是如何实现它的,并发现他们使用了DataFrame.count(),它会计数DataFrame中的所有非空值。参考熊猫源代码。我还没有对这种技术进行基准测试,但我认为库的作者可能已经就如何实现它做出了明智的选择。
df.isnull().sum()
这将为您提供DataFrame各列中所有NaN值的计数。
df.isna().any(axis=None)
从v0.23.2开始,您可以使用DataFrame。isna + DataFrame.any(axis=None),其中axis=None指定整个DataFrame的逻辑缩减。
# Setup
df = pd.DataFrame({'A': [1, 2, np.nan], 'B' : [np.nan, 4, 5]})
df
A B
0 1.0 NaN
1 2.0 4.0
2 NaN 5.0
df.isna()
A B
0 False True
1 False False
2 True False
df.isna().any(axis=None)
# True
有用的替代方案
numpy.isnan 如果您正在运行旧版本的pandas,则另一个性能选项。
np.isnan(df.values)
array([[False, True],
[False, False],
[ True, False]])
np.isnan(df.values).any()
# True
或者,检查和:
np.isnan(df.values).sum()
# 2
np.isnan(df.values).sum() > 0
# True
Series.hasnans 你也可以迭代地调用Series.hasnans。例如,要检查单个列是否有nan,
df['A'].hasnans
# True
要检查任何列是否具有nan,可以对any使用推导式(这是一种短路操作)。
any(df[c].hasnans for c in df)
# True
这实际上非常快。
我一直在使用以下和类型转换为字符串,并检查nan值
(str(df.at[index, 'column']) == 'nan')
这允许我检查一个系列中的特定值,而不只是返回如果它包含在系列中的某个地方。
Df.isnull ().any().any()应该这样做。