在Python Pandas中,检查DataFrame是否有一个(或多个)NaN值的最佳方法是什么?

我知道函数pd。isnan,但这将返回每个元素的布尔值的DataFrame。这篇文章也没有完全回答我的问题。


当前回答

条形表示缺少的值

import missingno
missingno.bar(df)# will give you exact no of values and values missing

其他回答

df.apply(axis=0, func=lambda x : any(pd.isnull(x)))

将检查每一列是否包含Nan。

为此,我们可以使用df.isna().any()语句。这将检查我们所有的列,如果有任何缺失值或nan返回True,如果没有缺失值则返回False。

我们可以通过使用seaborn moduleheatmap生成热图来查看数据集中存在的空值

import pandas as pd
import seaborn as sns
dataset=pd.read_csv('train.csv')
sns.heatmap(dataset.isnull(),cbar=False)

或者你可以在DF上使用.info(),例如:

df.info(null_counts=True)返回列中非_null的行数,例如:

<class 'pandas.core.frame.DataFrame'>
Int64Index: 3276314 entries, 0 to 3276313
Data columns (total 10 columns):
n_matches                          3276314 non-null int64
avg_pic_distance                   3276314 non-null float64

只是用 math.isnan(x),如果x是NaN(不是数字)则返回True,否则返回False。