在Python Pandas中,检查DataFrame是否有一个(或多个)NaN值的最佳方法是什么?
我知道函数pd。isnan,但这将返回每个元素的布尔值的DataFrame。这篇文章也没有完全回答我的问题。
在Python Pandas中,检查DataFrame是否有一个(或多个)NaN值的最佳方法是什么?
我知道函数pd。isnan,但这将返回每个元素的布尔值的DataFrame。这篇文章也没有完全回答我的问题。
当前回答
因为没有人提到,还有另一个变量叫做hasnans。
df[我]。如果pandas系列中的一个或多个值为NaN, hasnans将输出为True,否则为False。注意,它不是一个函数。
熊猫版本“0.19.2”和“0.20.2”
其他回答
加上霍布斯的精彩回答,我对Python和熊猫很陌生,所以如果我错了,请指出来。
要找出哪些行有nan:
nan_rows = df[df.isnull().any(1)]
将执行相同的操作,而不需要通过将any()的轴指定为1来检查'True'是否在行中存在。
因为没有人提到,还有另一个变量叫做hasnans。
df[我]。如果pandas系列中的一个或多个值为NaN, hasnans将输出为True,否则为False。注意,它不是一个函数。
熊猫版本“0.19.2”和“0.20.2”
你不仅可以检查是否有'NaN'存在,还可以使用下面的方法得到'NaN'在每一列中的百分比,
df = pd.DataFrame({'col1':[1,2,3,4,5],'col2':[6,np.nan,8,9,10]})
df
col1 col2
0 1 6.0
1 2 NaN
2 3 8.0
3 4 9.0
4 5 10.0
df.isnull().sum()/len(df)
col1 0.0
col2 0.2
dtype: float64
要找出特定列中哪些行有nan:
nan_rows = df[df['name column'].isnull()]
我一直在使用以下和类型转换为字符串,并检查nan值
(str(df.at[index, 'column']) == 'nan')
这允许我检查一个系列中的特定值,而不只是返回如果它包含在系列中的某个地方。