在Python Pandas中,检查DataFrame是否有一个(或多个)NaN值的最佳方法是什么?

我知道函数pd。isnan,但这将返回每个元素的布尔值的DataFrame。这篇文章也没有完全回答我的问题。


当前回答

因为没有人提到,还有另一个变量叫做hasnans。

df[我]。如果pandas系列中的一个或多个值为NaN, hasnans将输出为True,否则为False。注意,它不是一个函数。

熊猫版本“0.19.2”和“0.20.2”

其他回答

你不仅可以检查是否有'NaN'存在,还可以使用下面的方法得到'NaN'在每一列中的百分比,

df = pd.DataFrame({'col1':[1,2,3,4,5],'col2':[6,np.nan,8,9,10]})  
df  

   col1 col2  
0   1   6.0  
1   2   NaN  
2   3   8.0  
3   4   9.0  
4   5   10.0  


df.isnull().sum()/len(df)  
col1    0.0  
col2    0.2  
dtype: float64

由于pandas必须为DataFrame.dropna()找到这一点,我看了看他们是如何实现它的,并发现他们使用了DataFrame.count(),它会计数DataFrame中的所有非空值。参考熊猫源代码。我还没有对这种技术进行基准测试,但我认为库的作者可能已经就如何实现它做出了明智的选择。

条形表示缺少的值

import missingno
missingno.bar(df)# will give you exact no of values and values missing

我们可以通过使用seaborn moduleheatmap生成热图来查看数据集中存在的空值

import pandas as pd
import seaborn as sns
dataset=pd.read_csv('train.csv')
sns.heatmap(dataset.isnull(),cbar=False)

如果你需要知道有多少行有“一个或多个nan”:

df.isnull().T.any().T.sum()

或者如果你需要取出这些行并检查它们:

nan_rows = df[df.isnull().T.any()]