在Python Pandas中,检查DataFrame是否有一个(或多个)NaN值的最佳方法是什么?

我知道函数pd。isnan,但这将返回每个元素的布尔值的DataFrame。这篇文章也没有完全回答我的问题。


当前回答

你不仅可以检查是否有'NaN'存在,还可以使用下面的方法得到'NaN'在每一列中的百分比,

df = pd.DataFrame({'col1':[1,2,3,4,5],'col2':[6,np.nan,8,9,10]})  
df  

   col1 col2  
0   1   6.0  
1   2   NaN  
2   3   8.0  
3   4   9.0  
4   5   10.0  


df.isnull().sum()/len(df)  
col1    0.0  
col2    0.2  
dtype: float64

其他回答

试试下面的方法

df.isnull().sum()

or

df.isna().values.any()
df.apply(axis=0, func=lambda x : any(pd.isnull(x)))

将检查每一列是否包含Nan。

df.isna().any(axis=None)

从v0.23.2开始,您可以使用DataFrame。isna + DataFrame.any(axis=None),其中axis=None指定整个DataFrame的逻辑缩减。

# Setup
df = pd.DataFrame({'A': [1, 2, np.nan], 'B' : [np.nan, 4, 5]})
df
     A    B
0  1.0  NaN
1  2.0  4.0
2  NaN  5.0

df.isna()

       A      B
0  False   True
1  False  False
2   True  False

df.isna().any(axis=None)
# True

有用的替代方案

numpy.isnan 如果您正在运行旧版本的pandas,则另一个性能选项。

np.isnan(df.values)

array([[False,  True],
       [False, False],
       [ True, False]])

np.isnan(df.values).any()
# True

或者,检查和:

np.isnan(df.values).sum()
# 2

np.isnan(df.values).sum() > 0
# True

Series.hasnans 你也可以迭代地调用Series.hasnans。例如,要检查单个列是否有nan,

df['A'].hasnans
# True

要检查任何列是否具有nan,可以对any使用推导式(这是一种短路操作)。

any(df[c].hasnans for c in df)
# True

这实际上非常快。

条形表示缺少的值

import missingno
missingno.bar(df)# will give you exact no of values and values missing

你不仅可以检查是否有'NaN'存在,还可以使用下面的方法得到'NaN'在每一列中的百分比,

df = pd.DataFrame({'col1':[1,2,3,4,5],'col2':[6,np.nan,8,9,10]})  
df  

   col1 col2  
0   1   6.0  
1   2   NaN  
2   3   8.0  
3   4   9.0  
4   5   10.0  


df.isnull().sum()/len(df)  
col1    0.0  
col2    0.2  
dtype: float64