在Python Pandas中,检查DataFrame是否有一个(或多个)NaN值的最佳方法是什么?

我知道函数pd。isnan,但这将返回每个元素的布尔值的DataFrame。这篇文章也没有完全回答我的问题。


当前回答

你不仅可以检查是否有'NaN'存在,还可以使用下面的方法得到'NaN'在每一列中的百分比,

df = pd.DataFrame({'col1':[1,2,3,4,5],'col2':[6,np.nan,8,9,10]})  
df  

   col1 col2  
0   1   6.0  
1   2   NaN  
2   3   8.0  
3   4   9.0  
4   5   10.0  


df.isnull().sum()/len(df)  
col1    0.0  
col2    0.2  
dtype: float64

其他回答

如果你需要知道有多少行有“一个或多个nan”:

df.isnull().T.any().T.sum()

或者如果你需要取出这些行并检查它们:

nan_rows = df[df.isnull().T.any()]

或者你可以在DF上使用.info(),例如:

df.info(null_counts=True)返回列中非_null的行数,例如:

<class 'pandas.core.frame.DataFrame'>
Int64Index: 3276314 entries, 0 to 3276313
Data columns (total 10 columns):
n_matches                          3276314 non-null int64
avg_pic_distance                   3276314 non-null float64

加上霍布斯的精彩回答,我对Python和熊猫很陌生,所以如果我错了,请指出来。

要找出哪些行有nan:

nan_rows = df[df.isnull().any(1)]

将执行相同的操作,而不需要通过将any()的轴指定为1来检查'True'是否在行中存在。

另一种方法是dropna,检查长度是否相等:

>>> len(df.dropna()) != len(df)
True
>>> 

根据您正在处理的数据类型,您还可以在执行EDA时通过将dropna设置为False来获得每列的值计数。

for col in df:
   print df[col].value_counts(dropna=False)

适用于分类变量,但当你有很多唯一值时就不那么适用了。