在Python Pandas中,检查DataFrame是否有一个(或多个)NaN值的最佳方法是什么?
我知道函数pd。isnan,但这将返回每个元素的布尔值的DataFrame。这篇文章也没有完全回答我的问题。
在Python Pandas中,检查DataFrame是否有一个(或多个)NaN值的最佳方法是什么?
我知道函数pd。isnan,但这将返回每个元素的布尔值的DataFrame。这篇文章也没有完全回答我的问题。
当前回答
下面是另一种有趣的查找null并替换为计算值的方法
#Creating the DataFrame
testdf = pd.DataFrame({'Tenure':[1,2,3,4,5],'Monthly':[10,20,30,40,50],'Yearly':[10,40,np.nan,np.nan,250]})
>>> testdf2
Monthly Tenure Yearly
0 10 1 10.0
1 20 2 40.0
2 30 3 NaN
3 40 4 NaN
4 50 5 250.0
#Identifying the rows with empty columns
nan_rows = testdf2[testdf2['Yearly'].isnull()]
>>> nan_rows
Monthly Tenure Yearly
2 30 3 NaN
3 40 4 NaN
#Getting the rows# into a list
>>> index = list(nan_rows.index)
>>> index
[2, 3]
# Replacing null values with calculated value
>>> for i in index:
testdf2['Yearly'][i] = testdf2['Monthly'][i] * testdf2['Tenure'][i]
>>> testdf2
Monthly Tenure Yearly
0 10 1 10.0
1 20 2 40.0
2 30 3 90.0
3 40 4 160.0
4 50 5 250.0
其他回答
df.isnull().sum()
这将为您提供DataFrame各列中所有NaN值的计数。
Df.isnull ().any().any()应该这样做。
你不仅可以检查是否有'NaN'存在,还可以使用下面的方法得到'NaN'在每一列中的百分比,
df = pd.DataFrame({'col1':[1,2,3,4,5],'col2':[6,np.nan,8,9,10]})
df
col1 col2
0 1 6.0
1 2 NaN
2 3 8.0
3 4 9.0
4 5 10.0
df.isnull().sum()/len(df)
col1 0.0
col2 0.2
dtype: float64
df为Pandas数据框架的名称,任意值为numpy。Nan为空值。
如果你想查看哪些列有空,哪些没有(只有True和False) .any df.isnull () () 如果您只想查看有空值的列 df。loc [: df.isnull () .any ()] .columns 如果您想查看每一列中null的计数 .sum df.isna () () 如果您想查看每一列中空的百分比 .sum df.isna () () / (len (df)) * 100 如果你想查看只有空值的列中空值的百分比:
df.loc[:,list(df.loc[:,df.isnull().any()].columns)].isnull().sum()/(len(df))*100
编辑1:
如果你想从视觉上看到数据缺失的地方:
import missingno
missingdata_df = df.columns[df.isnull().any()].tolist()
missingno.matrix(df[missingdata_df])
下面是另一种有趣的查找null并替换为计算值的方法
#Creating the DataFrame
testdf = pd.DataFrame({'Tenure':[1,2,3,4,5],'Monthly':[10,20,30,40,50],'Yearly':[10,40,np.nan,np.nan,250]})
>>> testdf2
Monthly Tenure Yearly
0 10 1 10.0
1 20 2 40.0
2 30 3 NaN
3 40 4 NaN
4 50 5 250.0
#Identifying the rows with empty columns
nan_rows = testdf2[testdf2['Yearly'].isnull()]
>>> nan_rows
Monthly Tenure Yearly
2 30 3 NaN
3 40 4 NaN
#Getting the rows# into a list
>>> index = list(nan_rows.index)
>>> index
[2, 3]
# Replacing null values with calculated value
>>> for i in index:
testdf2['Yearly'][i] = testdf2['Monthly'][i] * testdf2['Tenure'][i]
>>> testdf2
Monthly Tenure Yearly
0 10 1 10.0
1 20 2 40.0
2 30 3 90.0
3 40 4 160.0
4 50 5 250.0