在Python Pandas中,检查DataFrame是否有一个(或多个)NaN值的最佳方法是什么?

我知道函数pd。isnan,但这将返回每个元素的布尔值的DataFrame。这篇文章也没有完全回答我的问题。


当前回答

df为Pandas数据框架的名称,任意值为numpy。Nan为空值。

如果你想查看哪些列有空,哪些没有(只有True和False) .any df.isnull () () 如果您只想查看有空值的列 df。loc [: df.isnull () .any ()] .columns 如果您想查看每一列中null的计数 .sum df.isna () () 如果您想查看每一列中空的百分比 .sum df.isna () () / (len (df)) * 100 如果你想查看只有空值的列中空值的百分比:

df.loc[:,list(df.loc[:,df.isnull().any()].columns)].isnull().sum()/(len(df))*100

编辑1:

如果你想从视觉上看到数据缺失的地方:

import missingno
missingdata_df = df.columns[df.isnull().any()].tolist()
missingno.matrix(df[missingdata_df])

其他回答

或者你可以在DF上使用.info(),例如:

df.info(null_counts=True)返回列中非_null的行数,例如:

<class 'pandas.core.frame.DataFrame'>
Int64Index: 3276314 entries, 0 to 3276313
Data columns (total 10 columns):
n_matches                          3276314 non-null int64
avg_pic_distance                   3276314 non-null float64

条形表示缺少的值

import missingno
missingno.bar(df)# will give you exact no of values and values missing

试试下面的方法

df.isnull().sum()

or

df.isna().values.any()

你不仅可以检查是否有'NaN'存在,还可以使用下面的方法得到'NaN'在每一列中的百分比,

df = pd.DataFrame({'col1':[1,2,3,4,5],'col2':[6,np.nan,8,9,10]})  
df  

   col1 col2  
0   1   6.0  
1   2   NaN  
2   3   8.0  
3   4   9.0  
4   5   10.0  


df.isnull().sum()/len(df)  
col1    0.0  
col2    0.2  
dtype: float64

这将只包括至少有一个null/na值的列。

 df.isnull().sum()[df.isnull().sum()>0]