在Python Pandas中,检查DataFrame是否有一个(或多个)NaN值的最佳方法是什么?

我知道函数pd。isnan,但这将返回每个元素的布尔值的DataFrame。这篇文章也没有完全回答我的问题。


当前回答

或者你可以在DF上使用.info(),例如:

df.info(null_counts=True)返回列中非_null的行数,例如:

<class 'pandas.core.frame.DataFrame'>
Int64Index: 3276314 entries, 0 to 3276313
Data columns (total 10 columns):
n_matches                          3276314 non-null int64
avg_pic_distance                   3276314 non-null float64

其他回答

因为没有人提到,还有另一个变量叫做hasnans。

df[我]。如果pandas系列中的一个或多个值为NaN, hasnans将输出为True,否则为False。注意,它不是一个函数。

熊猫版本“0.19.2”和“0.20.2”

根据您正在处理的数据类型,您还可以在执行EDA时通过将dropna设置为False来获得每列的值计数。

for col in df:
   print df[col].value_counts(dropna=False)

适用于分类变量,但当你有很多唯一值时就不那么适用了。

只是用 math.isnan(x),如果x是NaN(不是数字)则返回True,否则返回False。

为此,我们可以使用df.isna().any()语句。这将检查我们所有的列,如果有任何缺失值或nan返回True,如果没有缺失值则返回False。

Df.isnull ().any().any()应该这样做。