在Python Pandas中,检查DataFrame是否有一个(或多个)NaN值的最佳方法是什么?

我知道函数pd。isnan,但这将返回每个元素的布尔值的DataFrame。这篇文章也没有完全回答我的问题。


当前回答

Df.isnull ().any().any()应该这样做。

其他回答

df.isna().any(axis=None)

从v0.23.2开始,您可以使用DataFrame。isna + DataFrame.any(axis=None),其中axis=None指定整个DataFrame的逻辑缩减。

# Setup
df = pd.DataFrame({'A': [1, 2, np.nan], 'B' : [np.nan, 4, 5]})
df
     A    B
0  1.0  NaN
1  2.0  4.0
2  NaN  5.0

df.isna()

       A      B
0  False   True
1  False  False
2   True  False

df.isna().any(axis=None)
# True

有用的替代方案

numpy.isnan 如果您正在运行旧版本的pandas,则另一个性能选项。

np.isnan(df.values)

array([[False,  True],
       [False, False],
       [ True, False]])

np.isnan(df.values).any()
# True

或者,检查和:

np.isnan(df.values).sum()
# 2

np.isnan(df.values).sum() > 0
# True

Series.hasnans 你也可以迭代地调用Series.hasnans。例如,要检查单个列是否有nan,

df['A'].hasnans
# True

要检查任何列是否具有nan,可以对any使用推导式(这是一种短路操作)。

any(df[c].hasnans for c in df)
# True

这实际上非常快。

我建议使用值属性作为数组的计算是更快的。

arr = np.random.randn(100, 100)
arr[40, 40] = np.nan
df = pd.DataFrame(arr)

%timeit np.isnan(df.values).any()  # 7.56 µs
%timeit np.isnan(df).any()         # 627 µs
%timeit df.isna().any(axis=None)   # 572 µs

结果:

7.56 µs ± 447 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
627 µs ± 40.3 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
572 µs ± 15.3 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

注意:你需要在Jupyter笔记本上运行%timeit才能工作

要找出特定列中哪些行有nan:

nan_rows = df[df['name column'].isnull()]

条形表示缺少的值

import missingno
missingno.bar(df)# will give you exact no of values and values missing

最好的方法是:

df.isna().any().any()

原因如下。所以isna()被用来定义isnull(),但这两者当然是相同的。

这甚至比公认的答案还要快,并且涵盖了所有2D熊猫数组。