在Python Pandas中,检查DataFrame是否有一个(或多个)NaN值的最佳方法是什么?
我知道函数pd。isnan,但这将返回每个元素的布尔值的DataFrame。这篇文章也没有完全回答我的问题。
在Python Pandas中,检查DataFrame是否有一个(或多个)NaN值的最佳方法是什么?
我知道函数pd。isnan,但这将返回每个元素的布尔值的DataFrame。这篇文章也没有完全回答我的问题。
当前回答
根据您正在处理的数据类型,您还可以在执行EDA时通过将dropna设置为False来获得每列的值计数。
for col in df:
print df[col].value_counts(dropna=False)
适用于分类变量,但当你有很多唯一值时就不那么适用了。
其他回答
Df.isnull ().any().any()应该这样做。
df.apply(axis=0, func=lambda x : any(pd.isnull(x)))
将检查每一列是否包含Nan。
另一种方法是dropna,检查长度是否相等:
>>> len(df.dropna()) != len(df)
True
>>>
试试下面的方法
df.isnull().sum()
or
df.isna().values.any()
Jwilner的回答是正确的。我正在探索是否有更快的选择,因为根据我的经验,平坦数组的和(奇怪地)比计数快。这段代码似乎更快:
df.isnull().values.any()
import numpy as np
import pandas as pd
import perfplot
def setup(n):
df = pd.DataFrame(np.random.randn(n))
df[df > 0.9] = np.nan
return df
def isnull_any(df):
return df.isnull().any()
def isnull_values_sum(df):
return df.isnull().values.sum() > 0
def isnull_sum(df):
return df.isnull().sum() > 0
def isnull_values_any(df):
return df.isnull().values.any()
perfplot.save(
"out.png",
setup=setup,
kernels=[isnull_any, isnull_values_sum, isnull_sum, isnull_values_any],
n_range=[2 ** k for k in range(25)],
)
df.isnull().sum().sum()有点慢,但当然,它有额外的信息——nan的数量。