在Python Pandas中,检查DataFrame是否有一个(或多个)NaN值的最佳方法是什么?

我知道函数pd。isnan,但这将返回每个元素的布尔值的DataFrame。这篇文章也没有完全回答我的问题。


当前回答

最好的方法是:

df.isna().any().any()

原因如下。所以isna()被用来定义isnull(),但这两者当然是相同的。

这甚至比公认的答案还要快,并且涵盖了所有2D熊猫数组。

其他回答

如果你需要知道有多少行有“一个或多个nan”:

df.isnull().T.any().T.sum()

或者如果你需要取出这些行并检查它们:

nan_rows = df[df.isnull().T.any()]

Df.isnull ().any().any()应该这样做。

要找出特定列中哪些行有nan:

nan_rows = df[df['name column'].isnull()]

或者你可以在DF上使用.info(),例如:

df.info(null_counts=True)返回列中非_null的行数,例如:

<class 'pandas.core.frame.DataFrame'>
Int64Index: 3276314 entries, 0 to 3276313
Data columns (total 10 columns):
n_matches                          3276314 non-null int64
avg_pic_distance                   3276314 non-null float64

只是用 math.isnan(x),如果x是NaN(不是数字)则返回True,否则返回False。