在Python Pandas中,检查DataFrame是否有一个(或多个)NaN值的最佳方法是什么?
我知道函数pd。isnan,但这将返回每个元素的布尔值的DataFrame。这篇文章也没有完全回答我的问题。
在Python Pandas中,检查DataFrame是否有一个(或多个)NaN值的最佳方法是什么?
我知道函数pd。isnan,但这将返回每个元素的布尔值的DataFrame。这篇文章也没有完全回答我的问题。
当前回答
df.isnull().sum()
这将为您提供DataFrame各列中所有NaN值的计数。
其他回答
加上霍布斯的精彩回答,我对Python和熊猫很陌生,所以如果我错了,请指出来。
要找出哪些行有nan:
nan_rows = df[df.isnull().any(1)]
将执行相同的操作,而不需要通过将any()的轴指定为1来检查'True'是否在行中存在。
我建议使用值属性作为数组的计算是更快的。
arr = np.random.randn(100, 100)
arr[40, 40] = np.nan
df = pd.DataFrame(arr)
%timeit np.isnan(df.values).any() # 7.56 µs
%timeit np.isnan(df).any() # 627 µs
%timeit df.isna().any(axis=None) # 572 µs
结果:
7.56 µs ± 447 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
627 µs ± 40.3 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
572 µs ± 15.3 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
注意:你需要在Jupyter笔记本上运行%timeit才能工作
这将只包括至少有一个null/na值的列。
df.isnull().sum()[df.isnull().sum()>0]
import missingno as msno
msno.matrix(df) # just to visualize. no missing value.
只是用 math.isnan(x),如果x是NaN(不是数字)则返回True,否则返回False。