在Python Pandas中,检查DataFrame是否有一个(或多个)NaN值的最佳方法是什么?
我知道函数pd。isnan,但这将返回每个元素的布尔值的DataFrame。这篇文章也没有完全回答我的问题。
在Python Pandas中,检查DataFrame是否有一个(或多个)NaN值的最佳方法是什么?
我知道函数pd。isnan,但这将返回每个元素的布尔值的DataFrame。这篇文章也没有完全回答我的问题。
当前回答
为此,我们可以使用df.isna().any()语句。这将检查我们所有的列,如果有任何缺失值或nan返回True,如果没有缺失值则返回False。
其他回答
条形表示缺少的值
import missingno
missingno.bar(df)# will give you exact no of values and values missing
最好的方法是:
df.isna().any().any()
原因如下。所以isna()被用来定义isnull(),但这两者当然是相同的。
这甚至比公认的答案还要快,并且涵盖了所有2D熊猫数组。
Df.isnull ().any().any()应该这样做。
这将只包括至少有一个null/na值的列。
df.isnull().sum()[df.isnull().sum()>0]
df为Pandas数据框架的名称,任意值为numpy。Nan为空值。
如果你想查看哪些列有空,哪些没有(只有True和False) .any df.isnull () () 如果您只想查看有空值的列 df。loc [: df.isnull () .any ()] .columns 如果您想查看每一列中null的计数 .sum df.isna () () 如果您想查看每一列中空的百分比 .sum df.isna () () / (len (df)) * 100 如果你想查看只有空值的列中空值的百分比:
df.loc[:,list(df.loc[:,df.isnull().any()].columns)].isnull().sum()/(len(df))*100
编辑1:
如果你想从视觉上看到数据缺失的地方:
import missingno
missingdata_df = df.columns[df.isnull().any()].tolist()
missingno.matrix(df[missingdata_df])