在Python Pandas中,检查DataFrame是否有一个(或多个)NaN值的最佳方法是什么?
我知道函数pd。isnan,但这将返回每个元素的布尔值的DataFrame。这篇文章也没有完全回答我的问题。
在Python Pandas中,检查DataFrame是否有一个(或多个)NaN值的最佳方法是什么?
我知道函数pd。isnan,但这将返回每个元素的布尔值的DataFrame。这篇文章也没有完全回答我的问题。
当前回答
我一直在使用以下和类型转换为字符串,并检查nan值
(str(df.at[index, 'column']) == 'nan')
这允许我检查一个系列中的特定值,而不只是返回如果它包含在系列中的某个地方。
其他回答
要找出特定列中哪些行有nan:
nan_rows = df[df['name column'].isnull()]
只是用 math.isnan(x),如果x是NaN(不是数字)则返回True,否则返回False。
最好的方法是:
df.isna().any().any()
原因如下。所以isna()被用来定义isnull(),但这两者当然是相同的。
这甚至比公认的答案还要快,并且涵盖了所有2D熊猫数组。
加上霍布斯的精彩回答,我对Python和熊猫很陌生,所以如果我错了,请指出来。
要找出哪些行有nan:
nan_rows = df[df.isnull().any(1)]
将执行相同的操作,而不需要通过将any()的轴指定为1来检查'True'是否在行中存在。
df.isnull().sum()
这将为您提供DataFrame各列中所有NaN值的计数。