在Python Pandas中,检查DataFrame是否有一个(或多个)NaN值的最佳方法是什么?

我知道函数pd。isnan,但这将返回每个元素的布尔值的DataFrame。这篇文章也没有完全回答我的问题。


当前回答

由于pandas必须为DataFrame.dropna()找到这一点,我看了看他们是如何实现它的,并发现他们使用了DataFrame.count(),它会计数DataFrame中的所有非空值。参考熊猫源代码。我还没有对这种技术进行基准测试,但我认为库的作者可能已经就如何实现它做出了明智的选择。

其他回答

df.isna().any(axis=None)

从v0.23.2开始,您可以使用DataFrame。isna + DataFrame.any(axis=None),其中axis=None指定整个DataFrame的逻辑缩减。

# Setup
df = pd.DataFrame({'A': [1, 2, np.nan], 'B' : [np.nan, 4, 5]})
df
     A    B
0  1.0  NaN
1  2.0  4.0
2  NaN  5.0

df.isna()

       A      B
0  False   True
1  False  False
2   True  False

df.isna().any(axis=None)
# True

有用的替代方案

numpy.isnan 如果您正在运行旧版本的pandas,则另一个性能选项。

np.isnan(df.values)

array([[False,  True],
       [False, False],
       [ True, False]])

np.isnan(df.values).any()
# True

或者,检查和:

np.isnan(df.values).sum()
# 2

np.isnan(df.values).sum() > 0
# True

Series.hasnans 你也可以迭代地调用Series.hasnans。例如,要检查单个列是否有nan,

df['A'].hasnans
# True

要检查任何列是否具有nan,可以对any使用推导式(这是一种短路操作)。

any(df[c].hasnans for c in df)
# True

这实际上非常快。

另一种方法是dropna,检查长度是否相等:

>>> len(df.dropna()) != len(df)
True
>>> 

df为Pandas数据框架的名称,任意值为numpy。Nan为空值。

如果你想查看哪些列有空,哪些没有(只有True和False) .any df.isnull () () 如果您只想查看有空值的列 df。loc [: df.isnull () .any ()] .columns 如果您想查看每一列中null的计数 .sum df.isna () () 如果您想查看每一列中空的百分比 .sum df.isna () () / (len (df)) * 100 如果你想查看只有空值的列中空值的百分比:

df.loc[:,list(df.loc[:,df.isnull().any()].columns)].isnull().sum()/(len(df))*100

编辑1:

如果你想从视觉上看到数据缺失的地方:

import missingno
missingdata_df = df.columns[df.isnull().any()].tolist()
missingno.matrix(df[missingdata_df])

要找出特定列中哪些行有nan:

nan_rows = df[df['name column'].isnull()]

因为没有人提到,还有另一个变量叫做hasnans。

df[我]。如果pandas系列中的一个或多个值为NaN, hasnans将输出为True,否则为False。注意,它不是一个函数。

熊猫版本“0.19.2”和“0.20.2”