在Python Pandas中,检查DataFrame是否有一个(或多个)NaN值的最佳方法是什么?
我知道函数pd。isnan,但这将返回每个元素的布尔值的DataFrame。这篇文章也没有完全回答我的问题。
在Python Pandas中,检查DataFrame是否有一个(或多个)NaN值的最佳方法是什么?
我知道函数pd。isnan,但这将返回每个元素的布尔值的DataFrame。这篇文章也没有完全回答我的问题。
当前回答
我们可以通过使用seaborn moduleheatmap生成热图来查看数据集中存在的空值
import pandas as pd
import seaborn as sns
dataset=pd.read_csv('train.csv')
sns.heatmap(dataset.isnull(),cbar=False)
其他回答
df.apply(axis=0, func=lambda x : any(pd.isnull(x)))
将检查每一列是否包含Nan。
要找出特定列中哪些行有nan:
nan_rows = df[df['name column'].isnull()]
另一种方法是dropna,检查长度是否相等:
>>> len(df.dropna()) != len(df)
True
>>>
我建议使用值属性作为数组的计算是更快的。
arr = np.random.randn(100, 100)
arr[40, 40] = np.nan
df = pd.DataFrame(arr)
%timeit np.isnan(df.values).any() # 7.56 µs
%timeit np.isnan(df).any() # 627 µs
%timeit df.isna().any(axis=None) # 572 µs
结果:
7.56 µs ± 447 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
627 µs ± 40.3 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
572 µs ± 15.3 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
注意:你需要在Jupyter笔记本上运行%timeit才能工作
加上霍布斯的精彩回答,我对Python和熊猫很陌生,所以如果我错了,请指出来。
要找出哪些行有nan:
nan_rows = df[df.isnull().any(1)]
将执行相同的操作,而不需要通过将any()的轴指定为1来检查'True'是否在行中存在。