如何计算两个GPS坐标之间的距离(使用经纬度)?


我猜你想让它沿着地球的曲率运动。你的两点和地心在一个平面上。地球的中心是这个平面上的圆心,这两个点(大致)在这个圆的周长上。由此你可以通过求一点到另一点的角度来计算距离。

如果点的高度不一样,或者如果你需要考虑地球不是一个完美的球体,这就有点困难了。


计算两个坐标之间的纬度和经度的距离,包括一个Javascript实现。

西部和南部的位置是负的。 记住,分和秒是60度,所以S31 30'是-31.50度。

别忘了把角度转换成弧度。许多语言都有这个功能。或者它是一个简单的计算:弧度=角度* PI / 180。

function degreesToRadians(degrees) {
  return degrees * Math.PI / 180;
}

function distanceInKmBetweenEarthCoordinates(lat1, lon1, lat2, lon2) {
  var earthRadiusKm = 6371;

  var dLat = degreesToRadians(lat2-lat1);
  var dLon = degreesToRadians(lon2-lon1);

  lat1 = degreesToRadians(lat1);
  lat2 = degreesToRadians(lat2);

  var a = Math.sin(dLat/2) * Math.sin(dLat/2) +
          Math.sin(dLon/2) * Math.sin(dLon/2) * Math.cos(lat1) * Math.cos(lat2); 
  var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a)); 
  return earthRadiusKm * c;
}

下面是一些用法的例子:

distanceInKmBetweenEarthCoordinates(0,0,0,0)  // Distance between same 
                                              // points should be 0
0

distanceInKmBetweenEarthCoordinates(51.5, 0, 38.8, -77.1) // From London
                                                          // to Arlington
5918.185064088764

这段Lua代码改编自维基百科和Robert Lipe的GPSbabel工具:

local EARTH_RAD = 6378137.0 
  -- earth's radius in meters (official geoid datum, not 20,000km / pi)

local radmiles = EARTH_RAD*100.0/2.54/12.0/5280.0;
  -- earth's radius in miles

local multipliers = {
  radians = 1, miles = radmiles, mi = radmiles, feet = radmiles * 5280,
  meters = EARTH_RAD, m = EARTH_RAD, km = EARTH_RAD / 1000, 
  degrees = 360 / (2 * math.pi), min = 60 * 360 / (2 * math.pi)
}

function gcdist(pt1, pt2, units) -- return distance in radians or given units
  --- this formula works best for points close together or antipodal
  --- rounding error strikes when distance is one-quarter Earth's circumference
  --- (ref: wikipedia Great-circle distance)
  if not pt1.radians then pt1 = rad(pt1) end
  if not pt2.radians then pt2 = rad(pt2) end
  local sdlat = sin((pt1.lat - pt2.lat) / 2.0);
  local sdlon = sin((pt1.lon - pt2.lon) / 2.0);
  local res = sqrt(sdlat * sdlat + cos(pt1.lat) * cos(pt2.lat) * sdlon * sdlon);
  res = res > 1 and 1 or res < -1 and -1 or res
  res = 2 * asin(res);
  if units then return res * assert(multipliers[units])
  else return res
  end
end

这取决于你需要它有多准确。如果你需要精确到毫米的精度,最好看看使用椭球的算法,而不是球体,比如Vincenty的算法。


在SQL Server 2008中使用地理类型非常容易做到这一点。

SELECT geography::Point(lat1, lon1, 4326).STDistance(geography::Point(lat2, lon2, 4326))
-- computes distance in meters using eliptical model, accurate to the mm

4326是WGS84椭球地球模型的SRID


寻找带谷歌的哈弗辛;以下是我的解决方案:

#include <math.h>
#include "haversine.h"

#define d2r (M_PI / 180.0)

//calculate haversine distance for linear distance
double haversine_km(double lat1, double long1, double lat2, double long2)
{
    double dlong = (long2 - long1) * d2r;
    double dlat = (lat2 - lat1) * d2r;
    double a = pow(sin(dlat/2.0), 2) + cos(lat1*d2r) * cos(lat2*d2r) * pow(sin(dlong/2.0), 2);
    double c = 2 * atan2(sqrt(a), sqrt(1-a));
    double d = 6367 * c;

    return d;
}

double haversine_mi(double lat1, double long1, double lat2, double long2)
{
    double dlong = (long2 - long1) * d2r;
    double dlat = (lat2 - lat1) * d2r;
    double a = pow(sin(dlat/2.0), 2) + cos(lat1*d2r) * cos(lat2*d2r) * pow(sin(dlong/2.0), 2);
    double c = 2 * atan2(sqrt(a), sqrt(1-a));
    double d = 3956 * c; 

    return d;
}

下面是c#语言(用纬度和弧度表示):

double CalculateGreatCircleDistance(double lat1, double long1, double lat2, double long2, double radius)
{
    return radius * Math.Acos(
        Math.Sin(lat1) * Math.Sin(lat2)
        + Math.Cos(lat1) * Math.Cos(lat2) * Math.Cos(long2 - long1));
}

如果你的纬度和长度是用角度表示的,那么除以180/PI就可以转换成弧度。


一个T-SQL函数,我用来根据中心的距离选择记录

Create Function  [dbo].[DistanceInMiles] 
 (  @fromLatitude float ,
    @fromLongitude float ,
    @toLatitude float, 
    @toLongitude float
  )
   returns float
AS 
BEGIN
declare @distance float

select @distance = cast((3963 * ACOS(round(COS(RADIANS(90-@fromLatitude))*COS(RADIANS(90-@toLatitude))+ 
SIN(RADIANS(90-@fromLatitude))*SIN(RADIANS(90-@toLatitude))*COS(RADIANS(@fromLongitude-@toLongitude)),15)) 
)as float) 
  return  round(@distance,1)
END

    private double deg2rad(double deg)
    {
        return (deg * Math.PI / 180.0);
    }

    private double rad2deg(double rad)
    {
        return (rad / Math.PI * 180.0);
    }

    private double GetDistance(double lat1, double lon1, double lat2, double lon2)
    {
        //code for Distance in Kilo Meter
        double theta = lon1 - lon2;
        double dist = Math.Sin(deg2rad(lat1)) * Math.Sin(deg2rad(lat2)) + Math.Cos(deg2rad(lat1)) * Math.Cos(deg2rad(lat2)) * Math.Cos(deg2rad(theta));
        dist = Math.Abs(Math.Round(rad2deg(Math.Acos(dist)) * 60 * 1.1515 * 1.609344 * 1000, 0));
        return (dist);
    }

    private double GetDirection(double lat1, double lon1, double lat2, double lon2)
    {
        //code for Direction in Degrees
        double dlat = deg2rad(lat1) - deg2rad(lat2);
        double dlon = deg2rad(lon1) - deg2rad(lon2);
        double y = Math.Sin(dlon) * Math.Cos(lat2);
        double x = Math.Cos(deg2rad(lat1)) * Math.Sin(deg2rad(lat2)) - Math.Sin(deg2rad(lat1)) * Math.Cos(deg2rad(lat2)) * Math.Cos(dlon);
        double direct = Math.Round(rad2deg(Math.Atan2(y, x)), 0);
        if (direct < 0)
            direct = direct + 360;
        return (direct);
    }

    private double GetSpeed(double lat1, double lon1, double lat2, double lon2, DateTime CurTime, DateTime PrevTime)
    {
        //code for speed in Kilo Meter/Hour
        TimeSpan TimeDifference = CurTime.Subtract(PrevTime);
        double TimeDifferenceInSeconds = Math.Round(TimeDifference.TotalSeconds, 0);
        double theta = lon1 - lon2;
        double dist = Math.Sin(deg2rad(lat1)) * Math.Sin(deg2rad(lat2)) + Math.Cos(deg2rad(lat1)) * Math.Cos(deg2rad(lat2)) * Math.Cos(deg2rad(theta));
        dist = rad2deg(Math.Acos(dist)) * 60 * 1.1515 * 1.609344;
        double Speed = Math.Abs(Math.Round((dist / Math.Abs(TimeDifferenceInSeconds)) * 60 * 60, 0));
        return (Speed);
    }

    private double GetDuration(DateTime CurTime, DateTime PrevTime)
    {
        //code for speed in Kilo Meter/Hour
        TimeSpan TimeDifference = CurTime.Subtract(PrevTime);
        double TimeDifferenceInSeconds = Math.Abs(Math.Round(TimeDifference.TotalSeconds, 0));
        return (TimeDifferenceInSeconds);
    }

如果你需要更准确的数据,可以看看这个。

Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a) They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods such as great-circle distance which assume a spherical Earth. The first (direct) method computes the location of a point which is a given distance and azimuth (direction) from another point. The second (inverse) method computes the geographical distance and azimuth between two given points. They have been widely used in geodesy because they are accurate to within 0.5 mm (0.020″) on the Earth ellipsoid.


你可以在f#的fssnip中找到这个实现(有一些很好的解释)

以下是重要的部分:


let GreatCircleDistance<[&ltMeasure>] 'u> (R : float<'u>) (p1 : Location) (p2 : Location) =
    let degToRad (x : float&ltdeg>) = System.Math.PI * x / 180.0&ltdeg/rad>

    let sq x = x * x
    // take the sin of the half and square the result
    let sinSqHf (a : float&ltrad>) = (System.Math.Sin >> sq) (a / 2.0&ltrad>)
    let cos (a : float&ltdeg>) = System.Math.Cos (degToRad a / 1.0&ltrad>)

    let dLat = (p2.Latitude - p1.Latitude) |> degToRad
    let dLon = (p2.Longitude - p1.Longitude) |> degToRad

    let a = sinSqHf dLat + cos p1.Latitude * cos p2.Latitude * sinSqHf dLon
    let c = 2.0 * System.Math.Atan2(System.Math.Sqrt(a), System.Math.Sqrt(1.0-a))

    R * c

c#版本的Haversine

double _eQuatorialEarthRadius = 6378.1370D;
double _d2r = (Math.PI / 180D);

private int HaversineInM(double lat1, double long1, double lat2, double long2)
{
    return (int)(1000D * HaversineInKM(lat1, long1, lat2, long2));
}

private double HaversineInKM(double lat1, double long1, double lat2, double long2)
{
    double dlong = (long2 - long1) * _d2r;
    double dlat = (lat2 - lat1) * _d2r;
    double a = Math.Pow(Math.Sin(dlat / 2D), 2D) + Math.Cos(lat1 * _d2r) * Math.Cos(lat2 * _d2r) * Math.Pow(Math.Sin(dlong / 2D), 2D);
    double c = 2D * Math.Atan2(Math.Sqrt(a), Math.Sqrt(1D - a));
    double d = _eQuatorialEarthRadius * c;

    return d;
}

这里有一个。net小提琴,所以你可以用你自己的Lat/ long测试它。


这是“Henry Vilinskiy”为MySQL和km改编的版本:

CREATE FUNCTION `CalculateDistanceInKm`(
  fromLatitude float,
  fromLongitude float,
  toLatitude float, 
  toLongitude float
) RETURNS float
BEGIN
  declare distance float;

  select 
    6367 * ACOS(
            round(
              COS(RADIANS(90-fromLatitude)) *
                COS(RADIANS(90-toLatitude)) +
                SIN(RADIANS(90-fromLatitude)) *
                SIN(RADIANS(90-toLatitude)) *
                COS(RADIANS(fromLongitude-toLongitude))
              ,15)
            )
    into distance;

  return  round(distance,3);
END;

我需要在PowerShell中实现这个,希望它可以帮助其他人。 关于这种方法的一些注意事项

Don't split any of the lines or the calculation will be wrong To calculate in KM remove the * 1000 in the calculation of $distance Change $earthsRadius = 3963.19059 and remove * 1000 in the calculation of $distance the to calulate the distance in miles I'm using Haversine, as other posts have pointed out Vincenty's formulae is much more accurate Function MetresDistanceBetweenTwoGPSCoordinates($latitude1, $longitude1, $latitude2, $longitude2) { $Rad = ([math]::PI / 180); $earthsRadius = 6378.1370 # Earth's Radius in KM $dLat = ($latitude2 - $latitude1) * $Rad $dLon = ($longitude2 - $longitude1) * $Rad $latitude1 = $latitude1 * $Rad $latitude2 = $latitude2 * $Rad $a = [math]::Sin($dLat / 2) * [math]::Sin($dLat / 2) + [math]::Sin($dLon / 2) * [math]::Sin($dLon / 2) * [math]::Cos($latitude1) * [math]::Cos($latitude2) $c = 2 * [math]::ATan2([math]::Sqrt($a), [math]::Sqrt(1-$a)) $distance = [math]::Round($earthsRadius * $c * 1000, 0) #Multiple by 1000 to get metres Return $distance }


基于Roman Makarov对这个线程的回复的Java版本的Haversine算法

public class HaversineAlgorithm {

    static final double _eQuatorialEarthRadius = 6378.1370D;
    static final double _d2r = (Math.PI / 180D);

    public static int HaversineInM(double lat1, double long1, double lat2, double long2) {
        return (int) (1000D * HaversineInKM(lat1, long1, lat2, long2));
    }

    public static double HaversineInKM(double lat1, double long1, double lat2, double long2) {
        double dlong = (long2 - long1) * _d2r;
        double dlat = (lat2 - lat1) * _d2r;
        double a = Math.pow(Math.sin(dlat / 2D), 2D) + Math.cos(lat1 * _d2r) * Math.cos(lat2 * _d2r)
                * Math.pow(Math.sin(dlong / 2D), 2D);
        double c = 2D * Math.atan2(Math.sqrt(a), Math.sqrt(1D - a));
        double d = _eQuatorialEarthRadius * c;

        return d;
    }

}

下面是我在Python中使用的Haversine函数:

from math import pi,sqrt,sin,cos,atan2

def haversine(pos1, pos2):
    lat1 = float(pos1['lat'])
    long1 = float(pos1['long'])
    lat2 = float(pos2['lat'])
    long2 = float(pos2['long'])

    degree_to_rad = float(pi / 180.0)

    d_lat = (lat2 - lat1) * degree_to_rad
    d_long = (long2 - long1) * degree_to_rad

    a = pow(sin(d_lat / 2), 2) + cos(lat1 * degree_to_rad) * cos(lat2 * degree_to_rad) * pow(sin(d_long / 2), 2)
    c = 2 * atan2(sqrt(a), sqrt(1 - a))
    km = 6367 * c
    mi = 3956 * c

    return {"km":km, "miles":mi}

一、关于“面包屑”方法

地球半径在不同的纬度上是不同的。在Haversine算法中必须考虑到这一点。 考虑轴承的变化,它将直线变成拱门(更长的) 考虑到速度变化将把拱门变成螺旋(比拱门更长或更短) 高度变化将使平面螺旋变成3D螺旋(再次变长)。这对丘陵地区非常重要。

下面是考虑#1和#2的C语言函数:

double   calcDistanceByHaversine(double rLat1, double rLon1, double rHeading1,
       double rLat2, double rLon2, double rHeading2){
  double rDLatRad = 0.0;
  double rDLonRad = 0.0;
  double rLat1Rad = 0.0;
  double rLat2Rad = 0.0;
  double a = 0.0;
  double c = 0.0;
  double rResult = 0.0;
  double rEarthRadius = 0.0;
  double rDHeading = 0.0;
  double rDHeadingRad = 0.0;

  if ((rLat1 < -90.0) || (rLat1 > 90.0) || (rLat2 < -90.0) || (rLat2 > 90.0)
              || (rLon1 < -180.0) || (rLon1 > 180.0) || (rLon2 < -180.0)
              || (rLon2 > 180.0)) {
        return -1;
  };

  rDLatRad = (rLat2 - rLat1) * DEGREE_TO_RADIANS;
  rDLonRad = (rLon2 - rLon1) * DEGREE_TO_RADIANS;
  rLat1Rad = rLat1 * DEGREE_TO_RADIANS;
  rLat2Rad = rLat2 * DEGREE_TO_RADIANS;

  a = sin(rDLatRad / 2) * sin(rDLatRad / 2) + sin(rDLonRad / 2) * sin(
              rDLonRad / 2) * cos(rLat1Rad) * cos(rLat2Rad);

  if (a == 0.0) {
        return 0.0;
  }

  c = 2 * atan2(sqrt(a), sqrt(1 - a));
  rEarthRadius = 6378.1370 - (21.3847 * 90.0 / ((fabs(rLat1) + fabs(rLat2))
              / 2.0));
  rResult = rEarthRadius * c;

  // Chord to Arc Correction based on Heading changes. Important for routes with many turns and U-turns

  if ((rHeading1 >= 0.0) && (rHeading1 < 360.0) && (rHeading2 >= 0.0)
              && (rHeading2 < 360.0)) {
        rDHeading = fabs(rHeading1 - rHeading2);
        if (rDHeading > 180.0) {
              rDHeading -= 180.0;
        }
        rDHeadingRad = rDHeading * DEGREE_TO_RADIANS;
        if (rDHeading > 5.0) {
              rResult = rResult * (rDHeadingRad / (2.0 * sin(rDHeadingRad / 2)));
        } else {
              rResult = rResult / cos(rDHeadingRad);
        }
  }
  return rResult;
}

2有一种更简单的方法,效果很好。

按平均速度。

Trip_distance = Trip_average_speed * Trip_time

由于GPS速度是由多普勒效应检测的,与[Lon,Lat]没有直接关系,如果不是主要的距离计算方法,至少可以考虑作为次要的(备份或校正)。


Scala版本

  def deg2rad(deg: Double) = deg * Math.PI / 180.0

  def rad2deg(rad: Double) = rad / Math.PI * 180.0

  def getDistanceMeters(lat1: Double, lon1: Double, lat2: Double, lon2: Double) = {
    val theta = lon1 - lon2
    val dist = Math.sin(deg2rad(lat1)) * Math.sin(deg2rad(lat2)) + Math.cos(deg2rad(lat1)) *
      Math.cos(deg2rad(lat2)) * Math.cos(deg2rad(theta))
    Math.abs(
      Math.round(
        rad2deg(Math.acos(dist)) * 60 * 1.1515 * 1.609344 * 1000)
    )
  }

PHP版本:

(删除所有deg2rad()如果您的坐标已经是弧度。)

$R = 6371; // km
$dLat = deg2rad($lat2-$lat1);
$dLon = deg2rad($lon2-$lon1);
$lat1 = deg2rad($lat1);
$lat2 = deg2rad($lat2);

$a = sin($dLat/2) * sin($dLat/2) +
     sin($dLon/2) * sin($dLon/2) * cos($lat1) * cos($lat2); 

$c = 2 * atan2(sqrt($a), sqrt(1-$a)); 
$d = $R * $c;

在我的项目中,我需要计算很多点之间的距离,所以我继续尝试优化我在这里找到的代码。平均而言,在不同的浏览器中,我的新实现的运行速度比获得最多好评的答案快2倍。

function distance(lat1, lon1, lat2, lon2) {
  var p = 0.017453292519943295;    // Math.PI / 180
  var c = Math.cos;
  var a = 0.5 - c((lat2 - lat1) * p)/2 + 
          c(lat1 * p) * c(lat2 * p) * 
          (1 - c((lon2 - lon1) * p))/2;

  return 12742 * Math.asin(Math.sqrt(a)); // 2 * R; R = 6371 km
}

您可以在这里使用我的jsPerf并查看结果。

最近我需要在python中做同样的事情,所以这里是一个python实现:

from math import cos, asin, sqrt
def distance(lat1, lon1, lat2, lon2):
    p = 0.017453292519943295
    a = 0.5 - cos((lat2 - lat1) * p)/2 + cos(lat1 * p) * cos(lat2 * p) * (1 - cos((lon2 - lon1) * p)) / 2
    return 12742 * asin(sqrt(a))

为了完整起见:维基上的Haversine。


如果你使用的是。net,不要重新启动轮子。看到System.Device.Location。在另一个答案的评论中赞扬fnx。

using System.Device.Location;

double lat1 = 45.421527862548828D;
double long1 = -75.697189331054688D;
double lat2 = 53.64135D;
double long2 = -113.59273D;

GeoCoordinate geo1 = new GeoCoordinate(lat1, long1);
GeoCoordinate geo2 = new GeoCoordinate(lat2, long2);

double distance = geo1.GetDistanceTo(geo2);

下面是答案中的Swift实现

func degreesToRadians(degrees: Double) -> Double {
    return degrees * Double.pi / 180
}

func distanceInKmBetweenEarthCoordinates(lat1: Double, lon1: Double, lat2: Double, lon2: Double) -> Double {

    let earthRadiusKm: Double = 6371

    let dLat = degreesToRadians(degrees: lat2 - lat1)
    let dLon = degreesToRadians(degrees: lon2 - lon1)

    let lat1 = degreesToRadians(degrees: lat1)
    let lat2 = degreesToRadians(degrees: lat2)

    let a = sin(dLat/2) * sin(dLat/2) +
    sin(dLon/2) * sin(dLon/2) * cos(lat1) * cos(lat2)
    let c = 2 * atan2(sqrt(a), sqrt(1 - a))
    return earthRadiusKm * c
}

我把上面的答案用在Scala程序中

import java.lang.Math.{atan2, cos, sin, sqrt}

def latLonDistance(lat1: Double, lon1: Double)(lat2: Double, lon2: Double): Double = {
    val earthRadiusKm = 6371
    val dLat = (lat2 - lat1).toRadians
    val dLon = (lon2 - lon1).toRadians
    val latRad1 = lat1.toRadians
    val latRad2 = lat2.toRadians

    val a = sin(dLat / 2) * sin(dLat / 2) + sin(dLon / 2) * sin(dLon / 2) * cos(latRad1) * cos(latRad2)
    val c = 2 * atan2(sqrt(a), sqrt(1 - a))
    earthRadiusKm * c
}

我对函数进行了压缩,以便能够轻松地生成具有两个固定位置之一的函数,并且只需要一对lat/lon来生成距离。


这是我在Elixir中的实现

defmodule Geo do
  @earth_radius_km 6371
  @earth_radius_sm 3958.748
  @earth_radius_nm 3440.065
  @feet_per_sm 5280

  @d2r :math.pi / 180

  def deg_to_rad(deg), do: deg * @d2r

  def great_circle_distance(p1, p2, :km), do: haversine(p1, p2) * @earth_radius_km
  def great_circle_distance(p1, p2, :sm), do: haversine(p1, p2) * @earth_radius_sm
  def great_circle_distance(p1, p2, :nm), do: haversine(p1, p2) * @earth_radius_nm
  def great_circle_distance(p1, p2, :m), do: great_circle_distance(p1, p2, :km) * 1000
  def great_circle_distance(p1, p2, :ft), do: great_circle_distance(p1, p2, :sm) * @feet_per_sm

  @doc """
  Calculate the [Haversine](https://en.wikipedia.org/wiki/Haversine_formula)
  distance between two coordinates. Result is in radians. This result can be
  multiplied by the sphere's radius in any unit to get the distance in that unit.
  For example, multiple the result of this function by the Earth's radius in
  kilometres and you get the distance between the two given points in kilometres.
  """
  def haversine({lat1, lon1}, {lat2, lon2}) do
    dlat = deg_to_rad(lat2 - lat1)
    dlon = deg_to_rad(lon2 - lon1)

    radlat1 = deg_to_rad(lat1)
    radlat2 = deg_to_rad(lat2)

    a = :math.pow(:math.sin(dlat / 2), 2) +
        :math.pow(:math.sin(dlon / 2), 2) *
        :math.cos(radlat1) * :math.cos(radlat2)

    2 * :math.atan2(:math.sqrt(a), :math.sqrt(1 - a))
  end
end

飞镖版本

Haversine Algorithm。

import 'dart:math';

class GeoUtils {

  static double _degreesToRadians(degrees) {
    return degrees * pi / 180;
  }

  static double distanceInKmBetweenEarthCoordinates(lat1, lon1, lat2, lon2) {
    var earthRadiusKm = 6371;

    var dLat = _degreesToRadians(lat2-lat1);
    var dLon = _degreesToRadians(lon2-lon1);

    lat1 = _degreesToRadians(lat1);
    lat2 = _degreesToRadians(lat2);

    var a = sin(dLat/2) * sin(dLat/2) +
        sin(dLon/2) * sin(dLon/2) * cos(lat1) * cos(lat2);
    var c = 2 * atan2(sqrt(a), sqrt(1-a));
    return earthRadiusKm * c;
  }
}

我认为R中的一个算法版本仍然缺失:

gpsdistance<-function(lat1,lon1,lat2,lon2){

# internal function to change deg to rad

degreesToRadians<- function (degrees) {
return (degrees * pi / 180)
}

R<-6371e3  #radius of Earth in meters

phi1<-degreesToRadians(lat1) # latitude 1
phi2<-degreesToRadians(lat2) # latitude 2
lambda1<-degreesToRadians(lon1) # longitude 1
lambda2<-degreesToRadians(lon2) # longitude 2

delta_phi<-phi1-phi2 # latitude-distance
delta_lambda<-lambda1-lambda2 # longitude-distance

a<-sin(delta_phi/2)*sin(delta_phi/2)+
cos(phi1)*cos(phi2)*sin(delta_lambda/2)*
sin(delta_lambda/2)

cc<-2*atan2(sqrt(a),sqrt(1-a))

distance<- R * cc

return(distance)  # in meters
}

下面是Kotlin的一个变种:

import kotlin.math.*

class HaversineAlgorithm {

    companion object {
        private const val MEAN_EARTH_RADIUS = 6371.008
        private const val D2R = Math.PI / 180.0
    }

    private fun haversineInKm(lat1: Double, lon1: Double, lat2: Double, lon2: Double): Double {
        val lonDiff = (lon2 - lon1) * D2R
        val latDiff = (lat2 - lat1) * D2R
        val latSin = sin(latDiff / 2.0)
        val lonSin = sin(lonDiff / 2.0)
        val a = latSin * latSin + (cos(lat1 * D2R) * cos(lat2 * D2R) * lonSin * lonSin)
        val c = 2.0 * atan2(sqrt(a), sqrt(1.0 - a))
        return MEAN_EARTH_RADIUS * c
    }
}

对于java

public static double degreesToRadians(double degrees) {
    return degrees * Math.PI / 180;
}

public static double distanceInKmBetweenEarthCoordinates(Location location1, Location location2) {
    double earthRadiusKm = 6371;

    double dLat = degreesToRadians(location2.getLatitude()-location1.getLatitude());
    double dLon = degreesToRadians(location2.getLongitude()-location1.getLongitude());

    double lat1 = degreesToRadians(location1.getLatitude());
    double lat2 = degreesToRadians(location2.getLatitude());

    double a = Math.sin(dLat/2) * Math.sin(dLat/2) +
            Math.sin(dLon/2) * Math.sin(dLon/2) * Math.cos(lat1) * Math.cos(lat2);
    double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
    return earthRadiusKm * c;
}

对于任何寻找Delphi/Pascal版本的人:

function GreatCircleDistance(const Lat1, Long1, Lat2, Long2: Double): Double;
var
  Lat1Rad, Long1Rad, Lat2Rad, Long2Rad: Double;
const
  EARTH_RADIUS_KM = 6378;
begin
  Lat1Rad  := DegToRad(Lat1);
  Long1Rad := DegToRad(Long1);
  Lat2Rad  := DegToRad(Lat2);
  Long2Rad := DegToRad(Long2);
  Result   := EARTH_RADIUS_KM * ArcCos(Cos(Lat1Rad) * Cos(Lat2Rad) * Cos(Long1Rad - Long2Rad) + Sin(Lat1Rad) * Sin(Lat2Rad));
end;

我对这个代码没有任何功劳,我最初是在一个公共论坛上发现Gary William发布的。


在Python中,你可以使用geopy库使用WGS84椭球来计算测地线距离:

from geopy.distance import geodesic
newport_ri = (41.49008, -71.312796)
cleveland_oh = (41.499498, -81.695391)
print(geodesic(newport_ri, cleveland_oh).km)

Unity版本c#

Haversine Algorithm。

public float Distance(float lat1, float lon1, float lat2, float lon2)
{
    var earthRadiusKm = 6371;

    var dLat = (lat2 - lat1) * Mathf.Rad2Deg;
    var dLon = (lon2 - lon1) * Mathf.Rad2Deg;

    var a = Mathf.Sin(dLat / 2) * Mathf.Sin(dLat / 2) +
            Mathf.Sin(dLon / 2) * Mathf.Sin(dLon / 2) * 
            Mathf.Cos(lat1 * Mathf.Rad2Deg) * Mathf.Cos(lat2 * Mathf.Rad2Deg);

    var c = 2 * Mathf.Atan2(Mathf.Sqrt(a), Mathf.Sqrt(1 - a));
    return earthRadiusKm * c;
}


打印稿版本

export const degreeToRadian = (degree: number) => {
  return degree * Math.PI / 180;
}

export const distanceBetweenEarthCoordinatesInKm = (lat1: number, lon1: number, lat2: number, lon2: number) => {
    const earthRadiusInKm = 6371;

    const dLat = degreeToRadian(lat2 - lat1);
    const dLon = degreeToRadian(lon2 - lon1);

    lat1 = degreeToRadian(lat1);
    lat2 = degreeToRadian(lat2);

    const a = Math.sin(dLat / 2) * Math.sin(dLat / 2) + Math.sin(dLon / 2) * Math.sin(dLon / 2) * Math.cos(lat1) * Math.cos(lat2);
    const c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));

    return earthRadiusInKm * c;
}