如何计算两个GPS坐标之间的距离(使用经纬度)?


当前回答

如果你使用的是。net,不要重新启动轮子。看到System.Device.Location。在另一个答案的评论中赞扬fnx。

using System.Device.Location;

double lat1 = 45.421527862548828D;
double long1 = -75.697189331054688D;
double lat2 = 53.64135D;
double long2 = -113.59273D;

GeoCoordinate geo1 = new GeoCoordinate(lat1, long1);
GeoCoordinate geo2 = new GeoCoordinate(lat2, long2);

double distance = geo1.GetDistanceTo(geo2);

其他回答

c#版本的Haversine

double _eQuatorialEarthRadius = 6378.1370D;
double _d2r = (Math.PI / 180D);

private int HaversineInM(double lat1, double long1, double lat2, double long2)
{
    return (int)(1000D * HaversineInKM(lat1, long1, lat2, long2));
}

private double HaversineInKM(double lat1, double long1, double lat2, double long2)
{
    double dlong = (long2 - long1) * _d2r;
    double dlat = (lat2 - lat1) * _d2r;
    double a = Math.Pow(Math.Sin(dlat / 2D), 2D) + Math.Cos(lat1 * _d2r) * Math.Cos(lat2 * _d2r) * Math.Pow(Math.Sin(dlong / 2D), 2D);
    double c = 2D * Math.Atan2(Math.Sqrt(a), Math.Sqrt(1D - a));
    double d = _eQuatorialEarthRadius * c;

    return d;
}

这里有一个。net小提琴,所以你可以用你自己的Lat/ long测试它。

一、关于“面包屑”方法

地球半径在不同的纬度上是不同的。在Haversine算法中必须考虑到这一点。 考虑轴承的变化,它将直线变成拱门(更长的) 考虑到速度变化将把拱门变成螺旋(比拱门更长或更短) 高度变化将使平面螺旋变成3D螺旋(再次变长)。这对丘陵地区非常重要。

下面是考虑#1和#2的C语言函数:

double   calcDistanceByHaversine(double rLat1, double rLon1, double rHeading1,
       double rLat2, double rLon2, double rHeading2){
  double rDLatRad = 0.0;
  double rDLonRad = 0.0;
  double rLat1Rad = 0.0;
  double rLat2Rad = 0.0;
  double a = 0.0;
  double c = 0.0;
  double rResult = 0.0;
  double rEarthRadius = 0.0;
  double rDHeading = 0.0;
  double rDHeadingRad = 0.0;

  if ((rLat1 < -90.0) || (rLat1 > 90.0) || (rLat2 < -90.0) || (rLat2 > 90.0)
              || (rLon1 < -180.0) || (rLon1 > 180.0) || (rLon2 < -180.0)
              || (rLon2 > 180.0)) {
        return -1;
  };

  rDLatRad = (rLat2 - rLat1) * DEGREE_TO_RADIANS;
  rDLonRad = (rLon2 - rLon1) * DEGREE_TO_RADIANS;
  rLat1Rad = rLat1 * DEGREE_TO_RADIANS;
  rLat2Rad = rLat2 * DEGREE_TO_RADIANS;

  a = sin(rDLatRad / 2) * sin(rDLatRad / 2) + sin(rDLonRad / 2) * sin(
              rDLonRad / 2) * cos(rLat1Rad) * cos(rLat2Rad);

  if (a == 0.0) {
        return 0.0;
  }

  c = 2 * atan2(sqrt(a), sqrt(1 - a));
  rEarthRadius = 6378.1370 - (21.3847 * 90.0 / ((fabs(rLat1) + fabs(rLat2))
              / 2.0));
  rResult = rEarthRadius * c;

  // Chord to Arc Correction based on Heading changes. Important for routes with many turns and U-turns

  if ((rHeading1 >= 0.0) && (rHeading1 < 360.0) && (rHeading2 >= 0.0)
              && (rHeading2 < 360.0)) {
        rDHeading = fabs(rHeading1 - rHeading2);
        if (rDHeading > 180.0) {
              rDHeading -= 180.0;
        }
        rDHeadingRad = rDHeading * DEGREE_TO_RADIANS;
        if (rDHeading > 5.0) {
              rResult = rResult * (rDHeadingRad / (2.0 * sin(rDHeadingRad / 2)));
        } else {
              rResult = rResult / cos(rDHeadingRad);
        }
  }
  return rResult;
}

2有一种更简单的方法,效果很好。

按平均速度。

Trip_distance = Trip_average_speed * Trip_time

由于GPS速度是由多普勒效应检测的,与[Lon,Lat]没有直接关系,如果不是主要的距离计算方法,至少可以考虑作为次要的(备份或校正)。

这是我在Elixir中的实现

defmodule Geo do
  @earth_radius_km 6371
  @earth_radius_sm 3958.748
  @earth_radius_nm 3440.065
  @feet_per_sm 5280

  @d2r :math.pi / 180

  def deg_to_rad(deg), do: deg * @d2r

  def great_circle_distance(p1, p2, :km), do: haversine(p1, p2) * @earth_radius_km
  def great_circle_distance(p1, p2, :sm), do: haversine(p1, p2) * @earth_radius_sm
  def great_circle_distance(p1, p2, :nm), do: haversine(p1, p2) * @earth_radius_nm
  def great_circle_distance(p1, p2, :m), do: great_circle_distance(p1, p2, :km) * 1000
  def great_circle_distance(p1, p2, :ft), do: great_circle_distance(p1, p2, :sm) * @feet_per_sm

  @doc """
  Calculate the [Haversine](https://en.wikipedia.org/wiki/Haversine_formula)
  distance between two coordinates. Result is in radians. This result can be
  multiplied by the sphere's radius in any unit to get the distance in that unit.
  For example, multiple the result of this function by the Earth's radius in
  kilometres and you get the distance between the two given points in kilometres.
  """
  def haversine({lat1, lon1}, {lat2, lon2}) do
    dlat = deg_to_rad(lat2 - lat1)
    dlon = deg_to_rad(lon2 - lon1)

    radlat1 = deg_to_rad(lat1)
    radlat2 = deg_to_rad(lat2)

    a = :math.pow(:math.sin(dlat / 2), 2) +
        :math.pow(:math.sin(dlon / 2), 2) *
        :math.cos(radlat1) * :math.cos(radlat2)

    2 * :math.atan2(:math.sqrt(a), :math.sqrt(1 - a))
  end
end

我认为R中的一个算法版本仍然缺失:

gpsdistance<-function(lat1,lon1,lat2,lon2){

# internal function to change deg to rad

degreesToRadians<- function (degrees) {
return (degrees * pi / 180)
}

R<-6371e3  #radius of Earth in meters

phi1<-degreesToRadians(lat1) # latitude 1
phi2<-degreesToRadians(lat2) # latitude 2
lambda1<-degreesToRadians(lon1) # longitude 1
lambda2<-degreesToRadians(lon2) # longitude 2

delta_phi<-phi1-phi2 # latitude-distance
delta_lambda<-lambda1-lambda2 # longitude-distance

a<-sin(delta_phi/2)*sin(delta_phi/2)+
cos(phi1)*cos(phi2)*sin(delta_lambda/2)*
sin(delta_lambda/2)

cc<-2*atan2(sqrt(a),sqrt(1-a))

distance<- R * cc

return(distance)  # in meters
}

Scala版本

  def deg2rad(deg: Double) = deg * Math.PI / 180.0

  def rad2deg(rad: Double) = rad / Math.PI * 180.0

  def getDistanceMeters(lat1: Double, lon1: Double, lat2: Double, lon2: Double) = {
    val theta = lon1 - lon2
    val dist = Math.sin(deg2rad(lat1)) * Math.sin(deg2rad(lat2)) + Math.cos(deg2rad(lat1)) *
      Math.cos(deg2rad(lat2)) * Math.cos(deg2rad(theta))
    Math.abs(
      Math.round(
        rad2deg(Math.acos(dist)) * 60 * 1.1515 * 1.609344 * 1000)
    )
  }