如何计算两个GPS坐标之间的距离(使用经纬度)?
当前回答
飞镖版本
Haversine Algorithm。
import 'dart:math';
class GeoUtils {
static double _degreesToRadians(degrees) {
return degrees * pi / 180;
}
static double distanceInKmBetweenEarthCoordinates(lat1, lon1, lat2, lon2) {
var earthRadiusKm = 6371;
var dLat = _degreesToRadians(lat2-lat1);
var dLon = _degreesToRadians(lon2-lon1);
lat1 = _degreesToRadians(lat1);
lat2 = _degreesToRadians(lat2);
var a = sin(dLat/2) * sin(dLat/2) +
sin(dLon/2) * sin(dLon/2) * cos(lat1) * cos(lat2);
var c = 2 * atan2(sqrt(a), sqrt(1-a));
return earthRadiusKm * c;
}
}
其他回答
一、关于“面包屑”方法
地球半径在不同的纬度上是不同的。在Haversine算法中必须考虑到这一点。 考虑轴承的变化,它将直线变成拱门(更长的) 考虑到速度变化将把拱门变成螺旋(比拱门更长或更短) 高度变化将使平面螺旋变成3D螺旋(再次变长)。这对丘陵地区非常重要。
下面是考虑#1和#2的C语言函数:
double calcDistanceByHaversine(double rLat1, double rLon1, double rHeading1,
double rLat2, double rLon2, double rHeading2){
double rDLatRad = 0.0;
double rDLonRad = 0.0;
double rLat1Rad = 0.0;
double rLat2Rad = 0.0;
double a = 0.0;
double c = 0.0;
double rResult = 0.0;
double rEarthRadius = 0.0;
double rDHeading = 0.0;
double rDHeadingRad = 0.0;
if ((rLat1 < -90.0) || (rLat1 > 90.0) || (rLat2 < -90.0) || (rLat2 > 90.0)
|| (rLon1 < -180.0) || (rLon1 > 180.0) || (rLon2 < -180.0)
|| (rLon2 > 180.0)) {
return -1;
};
rDLatRad = (rLat2 - rLat1) * DEGREE_TO_RADIANS;
rDLonRad = (rLon2 - rLon1) * DEGREE_TO_RADIANS;
rLat1Rad = rLat1 * DEGREE_TO_RADIANS;
rLat2Rad = rLat2 * DEGREE_TO_RADIANS;
a = sin(rDLatRad / 2) * sin(rDLatRad / 2) + sin(rDLonRad / 2) * sin(
rDLonRad / 2) * cos(rLat1Rad) * cos(rLat2Rad);
if (a == 0.0) {
return 0.0;
}
c = 2 * atan2(sqrt(a), sqrt(1 - a));
rEarthRadius = 6378.1370 - (21.3847 * 90.0 / ((fabs(rLat1) + fabs(rLat2))
/ 2.0));
rResult = rEarthRadius * c;
// Chord to Arc Correction based on Heading changes. Important for routes with many turns and U-turns
if ((rHeading1 >= 0.0) && (rHeading1 < 360.0) && (rHeading2 >= 0.0)
&& (rHeading2 < 360.0)) {
rDHeading = fabs(rHeading1 - rHeading2);
if (rDHeading > 180.0) {
rDHeading -= 180.0;
}
rDHeadingRad = rDHeading * DEGREE_TO_RADIANS;
if (rDHeading > 5.0) {
rResult = rResult * (rDHeadingRad / (2.0 * sin(rDHeadingRad / 2)));
} else {
rResult = rResult / cos(rDHeadingRad);
}
}
return rResult;
}
2有一种更简单的方法,效果很好。
按平均速度。
Trip_distance = Trip_average_speed * Trip_time
由于GPS速度是由多普勒效应检测的,与[Lon,Lat]没有直接关系,如果不是主要的距离计算方法,至少可以考虑作为次要的(备份或校正)。
c#版本的Haversine
double _eQuatorialEarthRadius = 6378.1370D;
double _d2r = (Math.PI / 180D);
private int HaversineInM(double lat1, double long1, double lat2, double long2)
{
return (int)(1000D * HaversineInKM(lat1, long1, lat2, long2));
}
private double HaversineInKM(double lat1, double long1, double lat2, double long2)
{
double dlong = (long2 - long1) * _d2r;
double dlat = (lat2 - lat1) * _d2r;
double a = Math.Pow(Math.Sin(dlat / 2D), 2D) + Math.Cos(lat1 * _d2r) * Math.Cos(lat2 * _d2r) * Math.Pow(Math.Sin(dlong / 2D), 2D);
double c = 2D * Math.Atan2(Math.Sqrt(a), Math.Sqrt(1D - a));
double d = _eQuatorialEarthRadius * c;
return d;
}
这里有一个。net小提琴,所以你可以用你自己的Lat/ long测试它。
我猜你想让它沿着地球的曲率运动。你的两点和地心在一个平面上。地球的中心是这个平面上的圆心,这两个点(大致)在这个圆的周长上。由此你可以通过求一点到另一点的角度来计算距离。
如果点的高度不一样,或者如果你需要考虑地球不是一个完美的球体,这就有点困难了。
这是“Henry Vilinskiy”为MySQL和km改编的版本:
CREATE FUNCTION `CalculateDistanceInKm`(
fromLatitude float,
fromLongitude float,
toLatitude float,
toLongitude float
) RETURNS float
BEGIN
declare distance float;
select
6367 * ACOS(
round(
COS(RADIANS(90-fromLatitude)) *
COS(RADIANS(90-toLatitude)) +
SIN(RADIANS(90-fromLatitude)) *
SIN(RADIANS(90-toLatitude)) *
COS(RADIANS(fromLongitude-toLongitude))
,15)
)
into distance;
return round(distance,3);
END;
一个T-SQL函数,我用来根据中心的距离选择记录
Create Function [dbo].[DistanceInMiles]
( @fromLatitude float ,
@fromLongitude float ,
@toLatitude float,
@toLongitude float
)
returns float
AS
BEGIN
declare @distance float
select @distance = cast((3963 * ACOS(round(COS(RADIANS(90-@fromLatitude))*COS(RADIANS(90-@toLatitude))+
SIN(RADIANS(90-@fromLatitude))*SIN(RADIANS(90-@toLatitude))*COS(RADIANS(@fromLongitude-@toLongitude)),15))
)as float)
return round(@distance,1)
END