如何计算两个GPS坐标之间的距离(使用经纬度)?
当前回答
Unity版本c#
Haversine Algorithm。
public float Distance(float lat1, float lon1, float lat2, float lon2)
{
var earthRadiusKm = 6371;
var dLat = (lat2 - lat1) * Mathf.Rad2Deg;
var dLon = (lon2 - lon1) * Mathf.Rad2Deg;
var a = Mathf.Sin(dLat / 2) * Mathf.Sin(dLat / 2) +
Mathf.Sin(dLon / 2) * Mathf.Sin(dLon / 2) *
Mathf.Cos(lat1 * Mathf.Rad2Deg) * Mathf.Cos(lat2 * Mathf.Rad2Deg);
var c = 2 * Mathf.Atan2(Mathf.Sqrt(a), Mathf.Sqrt(1 - a));
return earthRadiusKm * c;
}
其他回答
基于Roman Makarov对这个线程的回复的Java版本的Haversine算法
public class HaversineAlgorithm {
static final double _eQuatorialEarthRadius = 6378.1370D;
static final double _d2r = (Math.PI / 180D);
public static int HaversineInM(double lat1, double long1, double lat2, double long2) {
return (int) (1000D * HaversineInKM(lat1, long1, lat2, long2));
}
public static double HaversineInKM(double lat1, double long1, double lat2, double long2) {
double dlong = (long2 - long1) * _d2r;
double dlat = (lat2 - lat1) * _d2r;
double a = Math.pow(Math.sin(dlat / 2D), 2D) + Math.cos(lat1 * _d2r) * Math.cos(lat2 * _d2r)
* Math.pow(Math.sin(dlong / 2D), 2D);
double c = 2D * Math.atan2(Math.sqrt(a), Math.sqrt(1D - a));
double d = _eQuatorialEarthRadius * c;
return d;
}
}
计算两个坐标之间的纬度和经度的距离,包括一个Javascript实现。
西部和南部的位置是负的。 记住,分和秒是60度,所以S31 30'是-31.50度。
别忘了把角度转换成弧度。许多语言都有这个功能。或者它是一个简单的计算:弧度=角度* PI / 180。
function degreesToRadians(degrees) {
return degrees * Math.PI / 180;
}
function distanceInKmBetweenEarthCoordinates(lat1, lon1, lat2, lon2) {
var earthRadiusKm = 6371;
var dLat = degreesToRadians(lat2-lat1);
var dLon = degreesToRadians(lon2-lon1);
lat1 = degreesToRadians(lat1);
lat2 = degreesToRadians(lat2);
var a = Math.sin(dLat/2) * Math.sin(dLat/2) +
Math.sin(dLon/2) * Math.sin(dLon/2) * Math.cos(lat1) * Math.cos(lat2);
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
return earthRadiusKm * c;
}
下面是一些用法的例子:
distanceInKmBetweenEarthCoordinates(0,0,0,0) // Distance between same
// points should be 0
0
distanceInKmBetweenEarthCoordinates(51.5, 0, 38.8, -77.1) // From London
// to Arlington
5918.185064088764
我需要在PowerShell中实现这个,希望它可以帮助其他人。 关于这种方法的一些注意事项
Don't split any of the lines or the calculation will be wrong To calculate in KM remove the * 1000 in the calculation of $distance Change $earthsRadius = 3963.19059 and remove * 1000 in the calculation of $distance the to calulate the distance in miles I'm using Haversine, as other posts have pointed out Vincenty's formulae is much more accurate Function MetresDistanceBetweenTwoGPSCoordinates($latitude1, $longitude1, $latitude2, $longitude2) { $Rad = ([math]::PI / 180); $earthsRadius = 6378.1370 # Earth's Radius in KM $dLat = ($latitude2 - $latitude1) * $Rad $dLon = ($longitude2 - $longitude1) * $Rad $latitude1 = $latitude1 * $Rad $latitude2 = $latitude2 * $Rad $a = [math]::Sin($dLat / 2) * [math]::Sin($dLat / 2) + [math]::Sin($dLon / 2) * [math]::Sin($dLon / 2) * [math]::Cos($latitude1) * [math]::Cos($latitude2) $c = 2 * [math]::ATan2([math]::Sqrt($a), [math]::Sqrt(1-$a)) $distance = [math]::Round($earthsRadius * $c * 1000, 0) #Multiple by 1000 to get metres Return $distance }
在我的项目中,我需要计算很多点之间的距离,所以我继续尝试优化我在这里找到的代码。平均而言,在不同的浏览器中,我的新实现的运行速度比获得最多好评的答案快2倍。
function distance(lat1, lon1, lat2, lon2) {
var p = 0.017453292519943295; // Math.PI / 180
var c = Math.cos;
var a = 0.5 - c((lat2 - lat1) * p)/2 +
c(lat1 * p) * c(lat2 * p) *
(1 - c((lon2 - lon1) * p))/2;
return 12742 * Math.asin(Math.sqrt(a)); // 2 * R; R = 6371 km
}
您可以在这里使用我的jsPerf并查看结果。
最近我需要在python中做同样的事情,所以这里是一个python实现:
from math import cos, asin, sqrt
def distance(lat1, lon1, lat2, lon2):
p = 0.017453292519943295
a = 0.5 - cos((lat2 - lat1) * p)/2 + cos(lat1 * p) * cos(lat2 * p) * (1 - cos((lon2 - lon1) * p)) / 2
return 12742 * asin(sqrt(a))
为了完整起见:维基上的Haversine。
寻找带谷歌的哈弗辛;以下是我的解决方案:
#include <math.h>
#include "haversine.h"
#define d2r (M_PI / 180.0)
//calculate haversine distance for linear distance
double haversine_km(double lat1, double long1, double lat2, double long2)
{
double dlong = (long2 - long1) * d2r;
double dlat = (lat2 - lat1) * d2r;
double a = pow(sin(dlat/2.0), 2) + cos(lat1*d2r) * cos(lat2*d2r) * pow(sin(dlong/2.0), 2);
double c = 2 * atan2(sqrt(a), sqrt(1-a));
double d = 6367 * c;
return d;
}
double haversine_mi(double lat1, double long1, double lat2, double long2)
{
double dlong = (long2 - long1) * d2r;
double dlat = (lat2 - lat1) * d2r;
double a = pow(sin(dlat/2.0), 2) + cos(lat1*d2r) * cos(lat2*d2r) * pow(sin(dlong/2.0), 2);
double c = 2 * atan2(sqrt(a), sqrt(1-a));
double d = 3956 * c;
return d;
}