如何计算两个GPS坐标之间的距离(使用经纬度)?


当前回答

我认为R中的一个算法版本仍然缺失:

gpsdistance<-function(lat1,lon1,lat2,lon2){

# internal function to change deg to rad

degreesToRadians<- function (degrees) {
return (degrees * pi / 180)
}

R<-6371e3  #radius of Earth in meters

phi1<-degreesToRadians(lat1) # latitude 1
phi2<-degreesToRadians(lat2) # latitude 2
lambda1<-degreesToRadians(lon1) # longitude 1
lambda2<-degreesToRadians(lon2) # longitude 2

delta_phi<-phi1-phi2 # latitude-distance
delta_lambda<-lambda1-lambda2 # longitude-distance

a<-sin(delta_phi/2)*sin(delta_phi/2)+
cos(phi1)*cos(phi2)*sin(delta_lambda/2)*
sin(delta_lambda/2)

cc<-2*atan2(sqrt(a),sqrt(1-a))

distance<- R * cc

return(distance)  # in meters
}

其他回答

一个T-SQL函数,我用来根据中心的距离选择记录

Create Function  [dbo].[DistanceInMiles] 
 (  @fromLatitude float ,
    @fromLongitude float ,
    @toLatitude float, 
    @toLongitude float
  )
   returns float
AS 
BEGIN
declare @distance float

select @distance = cast((3963 * ACOS(round(COS(RADIANS(90-@fromLatitude))*COS(RADIANS(90-@toLatitude))+ 
SIN(RADIANS(90-@fromLatitude))*SIN(RADIANS(90-@toLatitude))*COS(RADIANS(@fromLongitude-@toLongitude)),15)) 
)as float) 
  return  round(@distance,1)
END

这是“Henry Vilinskiy”为MySQL和km改编的版本:

CREATE FUNCTION `CalculateDistanceInKm`(
  fromLatitude float,
  fromLongitude float,
  toLatitude float, 
  toLongitude float
) RETURNS float
BEGIN
  declare distance float;

  select 
    6367 * ACOS(
            round(
              COS(RADIANS(90-fromLatitude)) *
                COS(RADIANS(90-toLatitude)) +
                SIN(RADIANS(90-fromLatitude)) *
                SIN(RADIANS(90-toLatitude)) *
                COS(RADIANS(fromLongitude-toLongitude))
              ,15)
            )
    into distance;

  return  round(distance,3);
END;

我猜你想让它沿着地球的曲率运动。你的两点和地心在一个平面上。地球的中心是这个平面上的圆心,这两个点(大致)在这个圆的周长上。由此你可以通过求一点到另一点的角度来计算距离。

如果点的高度不一样,或者如果你需要考虑地球不是一个完美的球体,这就有点困难了。

如果你需要更准确的数据,可以看看这个。

Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a) They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods such as great-circle distance which assume a spherical Earth. The first (direct) method computes the location of a point which is a given distance and azimuth (direction) from another point. The second (inverse) method computes the geographical distance and azimuth between two given points. They have been widely used in geodesy because they are accurate to within 0.5 mm (0.020″) on the Earth ellipsoid.

寻找带谷歌的哈弗辛;以下是我的解决方案:

#include <math.h>
#include "haversine.h"

#define d2r (M_PI / 180.0)

//calculate haversine distance for linear distance
double haversine_km(double lat1, double long1, double lat2, double long2)
{
    double dlong = (long2 - long1) * d2r;
    double dlat = (lat2 - lat1) * d2r;
    double a = pow(sin(dlat/2.0), 2) + cos(lat1*d2r) * cos(lat2*d2r) * pow(sin(dlong/2.0), 2);
    double c = 2 * atan2(sqrt(a), sqrt(1-a));
    double d = 6367 * c;

    return d;
}

double haversine_mi(double lat1, double long1, double lat2, double long2)
{
    double dlong = (long2 - long1) * d2r;
    double dlat = (lat2 - lat1) * d2r;
    double a = pow(sin(dlat/2.0), 2) + cos(lat1*d2r) * cos(lat2*d2r) * pow(sin(dlong/2.0), 2);
    double c = 2 * atan2(sqrt(a), sqrt(1-a));
    double d = 3956 * c; 

    return d;
}