如何计算两个GPS坐标之间的距离(使用经纬度)?


当前回答

我认为R中的一个算法版本仍然缺失:

gpsdistance<-function(lat1,lon1,lat2,lon2){

# internal function to change deg to rad

degreesToRadians<- function (degrees) {
return (degrees * pi / 180)
}

R<-6371e3  #radius of Earth in meters

phi1<-degreesToRadians(lat1) # latitude 1
phi2<-degreesToRadians(lat2) # latitude 2
lambda1<-degreesToRadians(lon1) # longitude 1
lambda2<-degreesToRadians(lon2) # longitude 2

delta_phi<-phi1-phi2 # latitude-distance
delta_lambda<-lambda1-lambda2 # longitude-distance

a<-sin(delta_phi/2)*sin(delta_phi/2)+
cos(phi1)*cos(phi2)*sin(delta_lambda/2)*
sin(delta_lambda/2)

cc<-2*atan2(sqrt(a),sqrt(1-a))

distance<- R * cc

return(distance)  # in meters
}

其他回答

这取决于你需要它有多准确。如果你需要精确到毫米的精度,最好看看使用椭球的算法,而不是球体,比如Vincenty的算法。

在我的项目中,我需要计算很多点之间的距离,所以我继续尝试优化我在这里找到的代码。平均而言,在不同的浏览器中,我的新实现的运行速度比获得最多好评的答案快2倍。

function distance(lat1, lon1, lat2, lon2) {
  var p = 0.017453292519943295;    // Math.PI / 180
  var c = Math.cos;
  var a = 0.5 - c((lat2 - lat1) * p)/2 + 
          c(lat1 * p) * c(lat2 * p) * 
          (1 - c((lon2 - lon1) * p))/2;

  return 12742 * Math.asin(Math.sqrt(a)); // 2 * R; R = 6371 km
}

您可以在这里使用我的jsPerf并查看结果。

最近我需要在python中做同样的事情,所以这里是一个python实现:

from math import cos, asin, sqrt
def distance(lat1, lon1, lat2, lon2):
    p = 0.017453292519943295
    a = 0.5 - cos((lat2 - lat1) * p)/2 + cos(lat1 * p) * cos(lat2 * p) * (1 - cos((lon2 - lon1) * p)) / 2
    return 12742 * asin(sqrt(a))

为了完整起见:维基上的Haversine。

c#版本的Haversine

double _eQuatorialEarthRadius = 6378.1370D;
double _d2r = (Math.PI / 180D);

private int HaversineInM(double lat1, double long1, double lat2, double long2)
{
    return (int)(1000D * HaversineInKM(lat1, long1, lat2, long2));
}

private double HaversineInKM(double lat1, double long1, double lat2, double long2)
{
    double dlong = (long2 - long1) * _d2r;
    double dlat = (lat2 - lat1) * _d2r;
    double a = Math.Pow(Math.Sin(dlat / 2D), 2D) + Math.Cos(lat1 * _d2r) * Math.Cos(lat2 * _d2r) * Math.Pow(Math.Sin(dlong / 2D), 2D);
    double c = 2D * Math.Atan2(Math.Sqrt(a), Math.Sqrt(1D - a));
    double d = _eQuatorialEarthRadius * c;

    return d;
}

这里有一个。net小提琴,所以你可以用你自己的Lat/ long测试它。

如果你需要更准确的数据,可以看看这个。

Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a) They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods such as great-circle distance which assume a spherical Earth. The first (direct) method computes the location of a point which is a given distance and azimuth (direction) from another point. The second (inverse) method computes the geographical distance and azimuth between two given points. They have been widely used in geodesy because they are accurate to within 0.5 mm (0.020″) on the Earth ellipsoid.

下面是答案中的Swift实现

func degreesToRadians(degrees: Double) -> Double {
    return degrees * Double.pi / 180
}

func distanceInKmBetweenEarthCoordinates(lat1: Double, lon1: Double, lat2: Double, lon2: Double) -> Double {

    let earthRadiusKm: Double = 6371

    let dLat = degreesToRadians(degrees: lat2 - lat1)
    let dLon = degreesToRadians(degrees: lon2 - lon1)

    let lat1 = degreesToRadians(degrees: lat1)
    let lat2 = degreesToRadians(degrees: lat2)

    let a = sin(dLat/2) * sin(dLat/2) +
    sin(dLon/2) * sin(dLon/2) * cos(lat1) * cos(lat2)
    let c = 2 * atan2(sqrt(a), sqrt(1 - a))
    return earthRadiusKm * c
}