如何计算两个GPS坐标之间的距离(使用经纬度)?


当前回答

下面是我在Python中使用的Haversine函数:

from math import pi,sqrt,sin,cos,atan2

def haversine(pos1, pos2):
    lat1 = float(pos1['lat'])
    long1 = float(pos1['long'])
    lat2 = float(pos2['lat'])
    long2 = float(pos2['long'])

    degree_to_rad = float(pi / 180.0)

    d_lat = (lat2 - lat1) * degree_to_rad
    d_long = (long2 - long1) * degree_to_rad

    a = pow(sin(d_lat / 2), 2) + cos(lat1 * degree_to_rad) * cos(lat2 * degree_to_rad) * pow(sin(d_long / 2), 2)
    c = 2 * atan2(sqrt(a), sqrt(1 - a))
    km = 6367 * c
    mi = 3956 * c

    return {"km":km, "miles":mi}

其他回答

如果你使用的是。net,不要重新启动轮子。看到System.Device.Location。在另一个答案的评论中赞扬fnx。

using System.Device.Location;

double lat1 = 45.421527862548828D;
double long1 = -75.697189331054688D;
double lat2 = 53.64135D;
double long2 = -113.59273D;

GeoCoordinate geo1 = new GeoCoordinate(lat1, long1);
GeoCoordinate geo2 = new GeoCoordinate(lat2, long2);

double distance = geo1.GetDistanceTo(geo2);

我把上面的答案用在Scala程序中

import java.lang.Math.{atan2, cos, sin, sqrt}

def latLonDistance(lat1: Double, lon1: Double)(lat2: Double, lon2: Double): Double = {
    val earthRadiusKm = 6371
    val dLat = (lat2 - lat1).toRadians
    val dLon = (lon2 - lon1).toRadians
    val latRad1 = lat1.toRadians
    val latRad2 = lat2.toRadians

    val a = sin(dLat / 2) * sin(dLat / 2) + sin(dLon / 2) * sin(dLon / 2) * cos(latRad1) * cos(latRad2)
    val c = 2 * atan2(sqrt(a), sqrt(1 - a))
    earthRadiusKm * c
}

我对函数进行了压缩,以便能够轻松地生成具有两个固定位置之一的函数,并且只需要一对lat/lon来生成距离。

这取决于你需要它有多准确。如果你需要精确到毫米的精度,最好看看使用椭球的算法,而不是球体,比如Vincenty的算法。

在SQL Server 2008中使用地理类型非常容易做到这一点。

SELECT geography::Point(lat1, lon1, 4326).STDistance(geography::Point(lat2, lon2, 4326))
-- computes distance in meters using eliptical model, accurate to the mm

4326是WGS84椭球地球模型的SRID

PHP版本:

(删除所有deg2rad()如果您的坐标已经是弧度。)

$R = 6371; // km
$dLat = deg2rad($lat2-$lat1);
$dLon = deg2rad($lon2-$lon1);
$lat1 = deg2rad($lat1);
$lat2 = deg2rad($lat2);

$a = sin($dLat/2) * sin($dLat/2) +
     sin($dLon/2) * sin($dLon/2) * cos($lat1) * cos($lat2); 

$c = 2 * atan2(sqrt($a), sqrt(1-$a)); 
$d = $R * $c;