如何计算两个GPS坐标之间的距离(使用经纬度)?
当前回答
下面是我在Python中使用的Haversine函数:
from math import pi,sqrt,sin,cos,atan2
def haversine(pos1, pos2):
lat1 = float(pos1['lat'])
long1 = float(pos1['long'])
lat2 = float(pos2['lat'])
long2 = float(pos2['long'])
degree_to_rad = float(pi / 180.0)
d_lat = (lat2 - lat1) * degree_to_rad
d_long = (long2 - long1) * degree_to_rad
a = pow(sin(d_lat / 2), 2) + cos(lat1 * degree_to_rad) * cos(lat2 * degree_to_rad) * pow(sin(d_long / 2), 2)
c = 2 * atan2(sqrt(a), sqrt(1 - a))
km = 6367 * c
mi = 3956 * c
return {"km":km, "miles":mi}
其他回答
对于java
public static double degreesToRadians(double degrees) {
return degrees * Math.PI / 180;
}
public static double distanceInKmBetweenEarthCoordinates(Location location1, Location location2) {
double earthRadiusKm = 6371;
double dLat = degreesToRadians(location2.getLatitude()-location1.getLatitude());
double dLon = degreesToRadians(location2.getLongitude()-location1.getLongitude());
double lat1 = degreesToRadians(location1.getLatitude());
double lat2 = degreesToRadians(location2.getLatitude());
double a = Math.sin(dLat/2) * Math.sin(dLat/2) +
Math.sin(dLon/2) * Math.sin(dLon/2) * Math.cos(lat1) * Math.cos(lat2);
double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
return earthRadiusKm * c;
}
你可以在f#的fssnip中找到这个实现(有一些很好的解释)
以下是重要的部分:
let GreatCircleDistance<[<Measure>] 'u> (R : float<'u>) (p1 : Location) (p2 : Location) =
let degToRad (x : float<deg>) = System.Math.PI * x / 180.0<deg/rad>
let sq x = x * x
// take the sin of the half and square the result
let sinSqHf (a : float<rad>) = (System.Math.Sin >> sq) (a / 2.0<rad>)
let cos (a : float<deg>) = System.Math.Cos (degToRad a / 1.0<rad>)
let dLat = (p2.Latitude - p1.Latitude) |> degToRad
let dLon = (p2.Longitude - p1.Longitude) |> degToRad
let a = sinSqHf dLat + cos p1.Latitude * cos p2.Latitude * sinSqHf dLon
let c = 2.0 * System.Math.Atan2(System.Math.Sqrt(a), System.Math.Sqrt(1.0-a))
R * c
这取决于你需要它有多准确。如果你需要精确到毫米的精度,最好看看使用椭球的算法,而不是球体,比如Vincenty的算法。
一、关于“面包屑”方法
地球半径在不同的纬度上是不同的。在Haversine算法中必须考虑到这一点。 考虑轴承的变化,它将直线变成拱门(更长的) 考虑到速度变化将把拱门变成螺旋(比拱门更长或更短) 高度变化将使平面螺旋变成3D螺旋(再次变长)。这对丘陵地区非常重要。
下面是考虑#1和#2的C语言函数:
double calcDistanceByHaversine(double rLat1, double rLon1, double rHeading1,
double rLat2, double rLon2, double rHeading2){
double rDLatRad = 0.0;
double rDLonRad = 0.0;
double rLat1Rad = 0.0;
double rLat2Rad = 0.0;
double a = 0.0;
double c = 0.0;
double rResult = 0.0;
double rEarthRadius = 0.0;
double rDHeading = 0.0;
double rDHeadingRad = 0.0;
if ((rLat1 < -90.0) || (rLat1 > 90.0) || (rLat2 < -90.0) || (rLat2 > 90.0)
|| (rLon1 < -180.0) || (rLon1 > 180.0) || (rLon2 < -180.0)
|| (rLon2 > 180.0)) {
return -1;
};
rDLatRad = (rLat2 - rLat1) * DEGREE_TO_RADIANS;
rDLonRad = (rLon2 - rLon1) * DEGREE_TO_RADIANS;
rLat1Rad = rLat1 * DEGREE_TO_RADIANS;
rLat2Rad = rLat2 * DEGREE_TO_RADIANS;
a = sin(rDLatRad / 2) * sin(rDLatRad / 2) + sin(rDLonRad / 2) * sin(
rDLonRad / 2) * cos(rLat1Rad) * cos(rLat2Rad);
if (a == 0.0) {
return 0.0;
}
c = 2 * atan2(sqrt(a), sqrt(1 - a));
rEarthRadius = 6378.1370 - (21.3847 * 90.0 / ((fabs(rLat1) + fabs(rLat2))
/ 2.0));
rResult = rEarthRadius * c;
// Chord to Arc Correction based on Heading changes. Important for routes with many turns and U-turns
if ((rHeading1 >= 0.0) && (rHeading1 < 360.0) && (rHeading2 >= 0.0)
&& (rHeading2 < 360.0)) {
rDHeading = fabs(rHeading1 - rHeading2);
if (rDHeading > 180.0) {
rDHeading -= 180.0;
}
rDHeadingRad = rDHeading * DEGREE_TO_RADIANS;
if (rDHeading > 5.0) {
rResult = rResult * (rDHeadingRad / (2.0 * sin(rDHeadingRad / 2)));
} else {
rResult = rResult / cos(rDHeadingRad);
}
}
return rResult;
}
2有一种更简单的方法,效果很好。
按平均速度。
Trip_distance = Trip_average_speed * Trip_time
由于GPS速度是由多普勒效应检测的,与[Lon,Lat]没有直接关系,如果不是主要的距离计算方法,至少可以考虑作为次要的(备份或校正)。
我把上面的答案用在Scala程序中
import java.lang.Math.{atan2, cos, sin, sqrt}
def latLonDistance(lat1: Double, lon1: Double)(lat2: Double, lon2: Double): Double = {
val earthRadiusKm = 6371
val dLat = (lat2 - lat1).toRadians
val dLon = (lon2 - lon1).toRadians
val latRad1 = lat1.toRadians
val latRad2 = lat2.toRadians
val a = sin(dLat / 2) * sin(dLat / 2) + sin(dLon / 2) * sin(dLon / 2) * cos(latRad1) * cos(latRad2)
val c = 2 * atan2(sqrt(a), sqrt(1 - a))
earthRadiusKm * c
}
我对函数进行了压缩,以便能够轻松地生成具有两个固定位置之一的函数,并且只需要一对lat/lon来生成距离。