如何计算两个GPS坐标之间的距离(使用经纬度)?


当前回答

在我的项目中,我需要计算很多点之间的距离,所以我继续尝试优化我在这里找到的代码。平均而言,在不同的浏览器中,我的新实现的运行速度比获得最多好评的答案快2倍。

function distance(lat1, lon1, lat2, lon2) {
  var p = 0.017453292519943295;    // Math.PI / 180
  var c = Math.cos;
  var a = 0.5 - c((lat2 - lat1) * p)/2 + 
          c(lat1 * p) * c(lat2 * p) * 
          (1 - c((lon2 - lon1) * p))/2;

  return 12742 * Math.asin(Math.sqrt(a)); // 2 * R; R = 6371 km
}

您可以在这里使用我的jsPerf并查看结果。

最近我需要在python中做同样的事情,所以这里是一个python实现:

from math import cos, asin, sqrt
def distance(lat1, lon1, lat2, lon2):
    p = 0.017453292519943295
    a = 0.5 - cos((lat2 - lat1) * p)/2 + cos(lat1 * p) * cos(lat2 * p) * (1 - cos((lon2 - lon1) * p)) / 2
    return 12742 * asin(sqrt(a))

为了完整起见:维基上的Haversine。

其他回答

我需要在PowerShell中实现这个,希望它可以帮助其他人。 关于这种方法的一些注意事项

Don't split any of the lines or the calculation will be wrong To calculate in KM remove the * 1000 in the calculation of $distance Change $earthsRadius = 3963.19059 and remove * 1000 in the calculation of $distance the to calulate the distance in miles I'm using Haversine, as other posts have pointed out Vincenty's formulae is much more accurate Function MetresDistanceBetweenTwoGPSCoordinates($latitude1, $longitude1, $latitude2, $longitude2) { $Rad = ([math]::PI / 180); $earthsRadius = 6378.1370 # Earth's Radius in KM $dLat = ($latitude2 - $latitude1) * $Rad $dLon = ($longitude2 - $longitude1) * $Rad $latitude1 = $latitude1 * $Rad $latitude2 = $latitude2 * $Rad $a = [math]::Sin($dLat / 2) * [math]::Sin($dLat / 2) + [math]::Sin($dLon / 2) * [math]::Sin($dLon / 2) * [math]::Cos($latitude1) * [math]::Cos($latitude2) $c = 2 * [math]::ATan2([math]::Sqrt($a), [math]::Sqrt(1-$a)) $distance = [math]::Round($earthsRadius * $c * 1000, 0) #Multiple by 1000 to get metres Return $distance }

这取决于你需要它有多准确。如果你需要精确到毫米的精度,最好看看使用椭球的算法,而不是球体,比如Vincenty的算法。

我猜你想让它沿着地球的曲率运动。你的两点和地心在一个平面上。地球的中心是这个平面上的圆心,这两个点(大致)在这个圆的周长上。由此你可以通过求一点到另一点的角度来计算距离。

如果点的高度不一样,或者如果你需要考虑地球不是一个完美的球体,这就有点困难了。

寻找带谷歌的哈弗辛;以下是我的解决方案:

#include <math.h>
#include "haversine.h"

#define d2r (M_PI / 180.0)

//calculate haversine distance for linear distance
double haversine_km(double lat1, double long1, double lat2, double long2)
{
    double dlong = (long2 - long1) * d2r;
    double dlat = (lat2 - lat1) * d2r;
    double a = pow(sin(dlat/2.0), 2) + cos(lat1*d2r) * cos(lat2*d2r) * pow(sin(dlong/2.0), 2);
    double c = 2 * atan2(sqrt(a), sqrt(1-a));
    double d = 6367 * c;

    return d;
}

double haversine_mi(double lat1, double long1, double lat2, double long2)
{
    double dlong = (long2 - long1) * d2r;
    double dlat = (lat2 - lat1) * d2r;
    double a = pow(sin(dlat/2.0), 2) + cos(lat1*d2r) * cos(lat2*d2r) * pow(sin(dlong/2.0), 2);
    double c = 2 * atan2(sqrt(a), sqrt(1-a));
    double d = 3956 * c; 

    return d;
}

PHP版本:

(删除所有deg2rad()如果您的坐标已经是弧度。)

$R = 6371; // km
$dLat = deg2rad($lat2-$lat1);
$dLon = deg2rad($lon2-$lon1);
$lat1 = deg2rad($lat1);
$lat2 = deg2rad($lat2);

$a = sin($dLat/2) * sin($dLat/2) +
     sin($dLon/2) * sin($dLon/2) * cos($lat1) * cos($lat2); 

$c = 2 * atan2(sqrt($a), sqrt(1-$a)); 
$d = $R * $c;