我用c++写了一个程序来寻找ab = C的所有解,其中a, b和C一起使用所有的数字0-9,只使用一次。程序循环遍历a和b的值,并每次对a、b和ab运行数字计数例程,以检查是否满足数字条件。

但是,当ab超出整数限制时,会产生伪解。我最终使用如下代码来检查这个:

unsigned long b, c, c_test;
...
c_test=c*b;         // Possible overflow
if (c_test/b != c) {/* There has been an overflow*/}
else c=c_test;      // No overflow

是否有更好的方法来测试溢出?我知道有些芯片有一个内部标志,在溢出发生时设置,但我从未见过通过C或c++访问它。


注意,有符号int溢出在C和c++中是未定义的行为,因此您必须在不实际引起它的情况下检测它。对于加法前的有符号整型溢出,请参见在C/ c++中检测有符号溢出。


内联程序集允许您直接检查溢出位。如果你打算使用c++,你真的应该学习汇编。


最简单的方法是将unsigned long转换为unsigned long,进行乘法运算,并将结果与0x100000000LL进行比较。

你可能会发现这比你在例子中做除法更有效。

哦,它在C和c++中都可以工作(因为你已经用这两种语言标记了问题)。


我在看glibc手册。这里提到了整数溢出陷阱(FPE_INTOVF_TRAP)作为SIGFPE的一部分。这将是理想的,除了手册中令人讨厌的部分:

FPE_INTOVF_TRAP 整数溢出(在C程序中不可能,除非您以特定于硬件的方式启用溢出捕获)。

真的有点遗憾。


不能从C/ c++中访问溢出标志。

有些编译器允许你在代码中插入陷阱指令。在GCC上,选项是-ftrapv。

唯一可移植且与编译器无关的事情是自己检查溢出。就像你的例子一样。

但是,使用最新的GCC, -ftrapv似乎在x86上什么都不做。我猜这是一个旧版本的残余,或者特定于其他一些架构。我曾期望编译器在每次添加后插入一个INTO操作码。不幸的是,它不能这样做。


一些编译器提供了对CPU中整数溢出标志的访问,然后可以测试,但这不是标准的。

您还可以在执行乘法之前测试溢出的可能性:

if ( b > ULONG_MAX / a ) // a * b would overflow

一种简单的方法是重写所有操作符(特别是+和*),并在执行操作之前检查是否有溢出。


不能从C/ c++中访问溢出标志。

我不同意这种说法。您可以编写一些内联汇编语言并使用jo(跳转溢出)指令,假设您在x86上捕获溢出。当然,您的代码将不再能够移植到其他体系结构。

查看info as和info gcc。


有一种方法可以确定一个操作是否可能溢出,使用操作数中最高位的位置和一些基本的二进制数学知识。

对于加法,任何两个操作数的结果(最多)比最大操作数的最高1位多1位。例如:

bool addition_is_safe(uint32_t a, uint32_t b) {
    size_t a_bits=highestOneBitPosition(a), b_bits=highestOneBitPosition(b);
    return (a_bits<32 && b_bits<32);
}

对于乘法,任何两个操作数的结果(最多)是操作数的位数之和。例如:

bool multiplication_is_safe(uint32_t a, uint32_t b) {
    size_t a_bits=highestOneBitPosition(a), b_bits=highestOneBitPosition(b);
    return (a_bits+b_bits<=32);
}

类似地,你可以像这样估计a的b次方结果的最大大小:

bool exponentiation_is_safe(uint32_t a, uint32_t b) {
    size_t a_bits=highestOneBitPosition(a);
    return (a_bits*b<=32);
}

(当然,用比特数代替目标整数。)

我不确定确定数字中最高的1位位置的最快方法,这里有一个蛮力方法:

size_t highestOneBitPosition(uint32_t a) {
    size_t bits=0;
    while (a!=0) {
        ++bits;
        a>>=1;
    };
    return bits;
}

它不是完美的,但它能让你在做运算之前知道是否有两个数会溢出。我不知道它是否会比您建议的方式检查结果更快,因为highestOneBitPosition函数中的循环,但它可能会(特别是如果您事先知道操作数中有多少位)。


如果您有一个比您想要测试的数据类型大的数据类型(比如您做了一个32位的添加,而您有一个64位的类型),那么这将检测是否发生溢出。我的例子是一个8位的添加。但它可以放大。

uint8_t x, y;    /* Give these values */
const uint16_t data16    = x + y;
const bool carry        = (data16 > 0xFF);
const bool overflow     = ((~(x ^ y)) & (x ^ data16) & 0x80);

它基于本页解释的概念:http://www.cs.umd.edu/class/spring2003/cmsc311/Notes/Comb/overflow.html

对于一个32位的例子,0xFF变成0xFFFFFFFF, 0x80变成0x80000000,最后uint16_t变成uint64_t。

注意:这捕获整数加法/减法溢出,我意识到你的问题涉及乘法。在这种情况下,分裂可能是最好的办法。这通常是calloc实现确保参数在相乘以获得最终大小时不会溢出的一种方式。


用double计算结果。它们有15位有效数字。您的要求在c上有一个硬上限108 -它最多可以有8位数字。因此,如果它在范围内,结果将是精确的,否则它将不会溢出。


salter先生的回答是个好主意。

如果整数计算是必需的(为了精度),但浮点数是可用的,你可以这样做:

uint64_t foo(uint64_t a, uint64_t b) {
    double dc;

    dc = pow(a, b);

    if (dc < UINT_MAX) {
       return (powu64(a, b));
    }
    else {
      // Overflow
    }
}

对于无符号整数,只需检查结果是否小于其中一个参数:

unsigned int r, a, b;
r = a + b;
if (r < a)
{
    // Overflow
}

对于有符号整数,可以检查参数和结果的符号。

不同符号的整数不能溢出,相同符号的整数只有在结果为不同符号时才会溢出:

signed int r, a, b, s;
r = a + b;
s = a>=0;
if (s == (b>=0) && s != (r>=0))
{
    // Overflow
}

CERT开发了一种新方法,使用“as-if”无限范围(AIR)整数模型来检测和报告有符号整数溢出、无符号整数包装和整数截断。CERT已经发布了一份描述该模型的技术报告,并生成了一个基于GCC 4.4.0和GCC 4.5.0的工作原型。

AIR整数模型产生的值与使用无限范围整数所获得的值相等,或者导致违反运行时约束。与之前的整数模型不同,AIR整数不需要精确的陷阱,因此不会破坏或抑制大多数现有的优化。


我看到你用的是无符号整数。根据定义,在C中(我不了解c++),无符号算术不会溢出…所以,至少对C来说,你的观点是没有意义的:)

对于有符号整数,一旦出现溢出,就会发生未定义行为(UB),程序可以做任何事情(例如:使测试不确定)。

#include <limits.h>

int a = <something>;
int x = <something>;
a += x;              /* UB */
if (a < 0) {         /* Unreliable test */
  /* ... */
}

要创建一个符合要求的程序,您需要在生成溢出之前测试溢出。该方法也可以用于无符号整数:

// For addition
#include <limits.h>

int a = <something>;
int x = <something>;
if (x > 0 && a > INT_MAX - x) // `a + x` would overflow
if (x < 0 && a < INT_MIN - x) // `a + x` would underflow

// For subtraction
#include <limits.h>
int a = <something>;
int x = <something>;
if (x < 0 && a > INT_MAX + x) // `a - x` would overflow
if (x > 0 && a < INT_MIN + x) // `a - x` would underflow

// For multiplication
#include <limits.h>

int a = <something>;
int x = <something>;
// There may be a need to check for -1 for two's complement machines.
// If one number is -1 and another is INT_MIN, multiplying them we get abs(INT_MIN) which is 1 higher than INT_MAX
if (a == -1 && x == INT_MIN) // `a * x` can overflow
if (x == -1 && a == INT_MIN) // `a * x` (or `a / x`) can overflow
// general case
if (x != 0 && a > INT_MAX / x) // `a * x` would overflow
if (x != 0 && a < INT_MIN / x) // `a * x` would underflow

对于除法(INT_MIN和-1特殊情况除外),不可能超过INT_MIN或INT_MAX。


在C中捕获整数溢出指出了一种比CERT讨论的更通用的解决方案(就处理的类型而言,它更通用),即使它需要一些GCC扩展(我不知道它们有多广泛的支持)。


测试溢出的简单方法是通过检查当前值是否小于前一个值来进行验证。例如,假设你有一个循环输出2的幂:

long lng;
int n;
for (n = 0; n < 34; ++n)
{
   lng = pow (2, n);
   printf ("%li\n", lng);
}

添加溢出检查的方式,我描述的结果如下:

long signed lng, lng_prev = 0;
int n;
for (n = 0; n < 34; ++n)
{
    lng = pow (2, n);
    if (lng <= lng_prev)
    {
        printf ("Overflow: %i\n", n);
        /* Do whatever you do in the event of overflow.  */
    }
    printf ("%li\n", lng);
    lng_prev = lng;
}

它既适用于无符号值,也适用于正负符号值。

当然,如果您想对递减值而不是递增值执行类似的操作,您可以将<=符号翻转,使其为>=,假设下溢的行为与溢出的行为相同。坦率地说,这是在不访问CPU溢出标志的情况下所获得的可移植性(这将需要内联汇编代码,使您的代码在实现之间无法移植)。


这里有一个非常快速的方法来检测溢出,至少是加法,这可能会为乘法、除法和乘方提供线索。

其思想是,正是因为处理器会让值归零,而C/ c++是从任何特定的处理器抽象出来的,你可以:

uint32_t x, y;
uint32_t value = x + y;
bool overflow = value < (x | y);

这既确保了如果一个操作数为零,另一个操作数为零,则不会错误地检测到溢出,而且比前面建议的许多NOT/XOR/ and /test操作要快得多。

正如所指出的,这种方法虽然比其他更精细的方法更好,但仍然是可优化的。以下是包含优化的原始代码的修订:

uint32_t x, y;
uint32_t value = x + y;
const bool overflow = value < x; // Alternatively "value < y" should also work

一种更有效、更廉价的检测乘法溢出的方法是:

uint32_t x, y;
const uint32_t a = (x >> 16U) * (y & 0xFFFFU);
const uint32_t b = (x & 0xFFFFU) * (y >> 16U);
const bool overflow = ((x >> 16U) * (y >> 16U)) +
    (a >> 16U) + (b >> 16U);
uint32_t value = overflow ? UINT32_MAX : x * y;

这将导致UINT32_MAX溢出,或乘法的结果。在这种情况下,允许对有符号整数进行乘法运算是严格未定义的行为。

值得注意的是,这使用部分Karatsuba方法乘法分解来计算64位乘法的高32位,以检查是否应该设置它们中的任何一个,以了解32位乘法是否溢出。

如果使用c++,你可以把这个转换成一个简洁的小lambda来计算溢出,这样检测器的内部工作就被隐藏了:

uint32_t x, y;
const bool overflow
{
    [](const uint32_t x, const uint32_t y) noexcept -> bool
    {
        const uint32_t a{(x >> 16U) * uint16_t(y)};
        const uint32_t b{uint16_t(x) * (y >> 16U)};
        return ((x >> 16U) * (y >> 16U)) + (a >> 16U) + (b >> 16U);
    }(x, y)
};
uint32_t value{overflow ? UINT32_MAX : x * y};

警告:GCC在使用-O2编译时会优化掉溢出检查。 选项-Wall会在某些情况下给你一个警告

if (a + b < a) { /* Deal with overflow */ }

但在这个例子中不是:

b = abs(a);
if (b < 0) { /* Deal with overflow */ }

唯一安全的方法是在溢出发生之前检查溢出,正如CERT论文中所描述的那样,系统地使用这种方法将非常繁琐。

使用-fwrapv编译可以解决这个问题,但会禁用一些优化。

我们迫切需要一个更好的解决方案。我认为编译器应该发出一个警告,默认情况下,优化依赖于溢出没有发生。目前的情况允许编译器优化掉溢出检查,这在我看来是不可接受的。


我需要为浮点数回答同样的问题,在浮点数中位屏蔽和移位看起来没有希望。我确定的方法适用于有符号和无符号,整数和浮点数。即使没有更大的数据类型可以用于中间计算,它也可以工作。对于所有这些类型,它不是最有效的,但因为它确实适用于所有类型,所以值得使用。

有符号溢出测试,加减法:

Obtain the constants that represent the largest and smallest possible values for the type, MAXVALUE and MINVALUE. Compute and compare the signs of the operands. a. If either value is zero, then neither addition nor subtraction can overflow. Skip remaining tests. b. If the signs are opposite, then addition cannot overflow. Skip remaining tests. c. If the signs are the same, then subtraction cannot overflow. Skip remaining tests. Test for positive overflow of MAXVALUE. a. If both signs are positive and MAXVALUE - A < B, then addition will overflow. b. If the sign of B is negative and MAXVALUE - A < -B, then subtraction will overflow. Test for negative overflow of MINVALUE. a. If both signs are negative and MINVALUE - A > B, then addition will overflow. b. If the sign of A is negative and MINVALUE - A > B, then subtraction will overflow. Otherwise, no overflow.

签名溢出测试,乘法和除法:

Obtain the constants that represent the largest and smallest possible values for the type, MAXVALUE and MINVALUE. Compute and compare the magnitudes (absolute values) of the operands to one. (Below, assume A and B are these magnitudes, not the signed originals.) a. If either value is zero, multiplication cannot overflow, and division will yield zero or an infinity. b. If either value is one, multiplication and division cannot overflow. c. If the magnitude of one operand is below one and of the other is greater than one, multiplication cannot overflow. d. If the magnitudes are both less than one, division cannot overflow. Test for positive overflow of MAXVALUE. a. If both operands are greater than one and MAXVALUE / A < B, then multiplication will overflow. b. If B is less than one and MAXVALUE * B < A, then division will overflow. Otherwise, no overflow.

注意:MINVALUE的最小溢出由3处理,因为我们取的是绝对值。然而,如果 ABS(MINVALUE) > MAXVALUE,那么我们将会有一些罕见的假阳性。

下溢测试类似,但涉及EPSILON(大于零的最小正数)。


另一个有趣的工具是IOC: C/ c++的整数溢出检查器。

这是一个修补过的Clang编译器,它在编译时向代码添加检查。

输出如下所示:

CLANG ARITHMETIC UNDEFINED at <add.c, (9:11)> :
Op: +, Reason : Signed Addition Overflow,
BINARY OPERATION: left (int32): 2147483647 right (int32): 1

这里有一个“不可移植”的解决方案。Intel x86和x64 cpu有所谓的eflags寄存器,在每次整数算术运算后由处理器填充。我将跳过这里的详细描述。相关的标志是“溢出”标志(掩码0x800)和“携带”标志(掩码0x1)。为了正确地解释它们,应该考虑操作数是有符号类型还是无符号类型。

下面是一个从C/ c++中检查标志的实用方法。下面的代码可以在Visual Studio 2005或更新版本(32位和64位)上运行,也可以在GNU C/ c++ 64位上运行。

#include <cstddef>
#if defined( _MSC_VER )
#include <intrin.h>
#endif

inline size_t query_intel_x86_eflags(const size_t query_bit_mask)
{
    #if defined( _MSC_VER )

        return __readeflags() & query_bit_mask;

    #elif defined( __GNUC__ )
        // This code will work only on 64-bit GNU-C machines.
        // Tested and does NOT work with Intel C++ 10.1!
        size_t eflags;
        __asm__ __volatile__(
            "pushfq \n\t"
            "pop %%rax\n\t"
            "movq %%rax, %0\n\t"
            :"=r"(eflags)
            :
            :"%rax"
            );
        return eflags & query_bit_mask;

    #else

        #pragma message("No inline assembly will work with this compiler!")
            return 0;
    #endif
}

int main(int argc, char **argv)
{
    int x = 1000000000;
    int y = 20000;
    int z = x * y;
    int f = query_intel_x86_eflags(0x801);
    printf("%X\n", f);
}

如果操作数相乘而没有溢出,则query_intel_eflags(0x801)将得到0的返回值,即既没有设置进位标志,也没有设置溢出标志。在提供的main()示例代码中,发生溢出,并且两个标志都被设置为1。这个检查并不意味着任何进一步的计算,所以它应该相当快。


Clang现在支持有符号整数和无符号整数的动态溢出检查。参见-fsanitize=integer开关。目前,它是唯一完全支持用于调试目的的动态溢出检查的c++编译器。


为了扩展Head Geek的答案,有一种更快的方法来执行addition_is_safe;

bool addition_is_safe(unsigned int a, unsigned int b)
{
    unsigned int L_Mask = std::numeric_limits<unsigned int>::max();
    L_Mask >>= 1;
    L_Mask = ~L_Mask;

    a &= L_Mask;
    b &= L_Mask;

    return ( a == 0 || b == 0 );
}

这使用了机器架构安全,64位和32位无符号整数仍然可以正常工作。基本上,我创建了一个掩码,它将屏蔽除最重要的位外的所有内容。然后,对两个整数进行掩码,如果其中任何一个没有设置该位,则加法是安全的。

如果在某个构造函数中预初始化掩码,这将更快,因为它永远不会改变。


I see that a lot of people answered the question about overflow, but I wanted to address his original problem. He said the problem was to find ab=c such that all digits are used without repeating. Ok, that's not what he asked in this post, but I'm still think that it was necessary to study the upper bound of the problem and conclude that he would never need to calculate or detect an overflow (note: I'm not proficient in math so I did this step by step, but the end result was so simple that this might have a simple formula).

重点是问题要求的a b c的上限是98.765.432。不管怎样,先把问题分成琐碎部分和非琐碎部分:

X0 == 1(9、8、7、6、5、4、3、2的所有排列都是解) X1 == x(无解) 0b == 0(不可能解) 1b == 1(无解) Ab, a > 1, b > 1(非平凡)

Now we just need to show that no other solution is possible and only the permutations are valid (and then the code to print them is trivial). We go back to the upper bound. Actually the upper bound is c ≤ 98.765.432. It's the upper bound because it's the largest number with 8 digits (10 digits total minus 1 for each a and b). This upper bound is only for c because the bounds for a and b must be much lower because of the exponential growth, as we can calculate, varying b from 2 to the upper bound:

    9938.08^2 == 98765432
    462.241^3 == 98765432
    99.6899^4 == 98765432
    39.7119^5 == 98765432
    21.4998^6 == 98765432
    13.8703^7 == 98765432
    9.98448^8 == 98765432
    7.73196^9 == 98765432
    6.30174^10 == 98765432
    5.33068^11 == 98765432
    4.63679^12 == 98765432
    4.12069^13 == 98765432
    3.72429^14 == 98765432
    3.41172^15 == 98765432
    3.15982^16 == 98765432
    2.95305^17 == 98765432
    2.78064^18 == 98765432
    2.63493^19 == 98765432
    2.51033^20 == 98765432
    2.40268^21 == 98765432
    2.30883^22 == 98765432
    2.22634^23 == 98765432
    2.15332^24 == 98765432
    2.08826^25 == 98765432
    2.02995^26 == 98765432
    1.97741^27 == 98765432

注意,例如最后一行:它说1.97^27 ~98M。因此,例如,1^27 == 1和2^27 == 134.217.728,这不是一个解决方案,因为它有9位数字(2 > 1.97,所以它实际上比应该测试的要大)。可以看到,用于测试a和b的组合非常小。对于b == 14,我们需要尝试2和3。对于b == 3,我们从2开始,到462结束。结果均小于~98M。

现在只需测试以上所有的组合,找出不重复任何数字的组合:

    ['0', '2', '4', '5', '6', '7', '8'] 84^2 = 7056
    ['1', '2', '3', '4', '5', '8', '9'] 59^2 = 3481
    ['0', '1', '2', '3', '4', '5', '8', '9'] 59^2 = 3481 (+leading zero)
    ['1', '2', '3', '5', '8'] 8^3 = 512
    ['0', '1', '2', '3', '5', '8'] 8^3 = 512 (+leading zero)
    ['1', '2', '4', '6'] 4^2 = 16
    ['0', '1', '2', '4', '6'] 4^2 = 16 (+leading zero)
    ['1', '2', '4', '6'] 2^4 = 16
    ['0', '1', '2', '4', '6'] 2^4 = 16 (+leading zero)
    ['1', '2', '8', '9'] 9^2 = 81
    ['0', '1', '2', '8', '9'] 9^2 = 81 (+leading zero)
    ['1', '3', '4', '8'] 3^4 = 81
    ['0', '1', '3', '4', '8'] 3^4 = 81 (+leading zero)
    ['2', '3', '6', '7', '9'] 3^6 = 729
    ['0', '2', '3', '6', '7', '9'] 3^6 = 729 (+leading zero)
    ['2', '3', '8'] 2^3 = 8
    ['0', '2', '3', '8'] 2^3 = 8 (+leading zero)
    ['2', '3', '9'] 3^2 = 9
    ['0', '2', '3', '9'] 3^2 = 9 (+leading zero)
    ['2', '4', '6', '8'] 8^2 = 64
    ['0', '2', '4', '6', '8'] 8^2 = 64 (+leading zero)
    ['2', '4', '7', '9'] 7^2 = 49
    ['0', '2', '4', '7', '9'] 7^2 = 49 (+leading zero)

没有一个匹配问题(这也可以通过缺少'0','1',…“9”)。

下面是解决该问题的示例代码。还要注意,这是用Python编写的,不是因为它需要任意精确整数(代码不会计算任何大于9800万的数字),而是因为我们发现测试的数量非常少,所以我们应该使用高级语言来利用其内置的容器和库(还要注意:代码有28行)。

    import math

    m = 98765432
    l = []
    for i in xrange(2, 98765432):
        inv = 1.0/i
        r = m**inv
        if (r < 2.0): break
        top = int(math.floor(r))
        assert(top <= m)

        for j in xrange(2, top+1):
            s = str(i) + str(j) + str(j**i)
            l.append((sorted(s), i, j, j**i))
            assert(j**i <= m)

    l.sort()
    for s, i, j, ji in l:
        assert(ji <= m)
        ss = sorted(set(s))
        if s == ss:
            print '%s %d^%d = %d' % (s, i, j, ji)

        # Try with non significant zero somewhere
        s = ['0'] + s
        ss = sorted(set(s))
        if s == ss:
            print '%s %d^%d = %d (+leading zero)' % (s, i, j, ji)

尝试这个宏来测试32位机器的溢出位(改编自Angel Sinigersky的解决方案)

#define overflowflag(isOverflow){   \
size_t eflags;                      \
asm ("pushfl ;"                     \
     "pop %%eax"                    \
    : "=a" (eflags));               \
isOverflow = (eflags >> 11) & 1;}

我将其定义为宏,因为否则溢出位将被覆盖。

下面是上面代码段的一个小应用程序:

#include <cstddef>
#include <stdio.h>
#include <iostream>
#include <conio.h>
#if defined( _MSC_VER )
#include <intrin.h>
#include <oskit/x86>
#endif

using namespace std;

#define detectOverflow(isOverflow){     \
size_t eflags;                      \
asm ("pushfl ;"                     \
    "pop %%eax"                     \
    : "=a" (eflags));               \
isOverflow = (eflags >> 11) & 1;}

int main(int argc, char **argv) {

    bool endTest = false;
    bool isOverflow;

    do {
        cout << "Enter two intergers" << endl;
        int x = 0;
        int y = 0;
        cin.clear();
        cin >> x >> y;
        int z = x * y;
        detectOverflow(isOverflow)
        printf("\nThe result is: %d", z);
        if (!isOverflow) {
            std::cout << ": no overflow occured\n" << std::endl;
        } else {
            std::cout << ": overflow occured\n" << std::endl;
        }

        z = x * x * y;
        detectOverflow(isOverflow)
        printf("\nThe result is: %d", z);
        if (!isOverflow) {
            std::cout << ": no overflow ocurred\n" << std::endl;
        } else {
            std::cout << ": overflow occured\n" << std::endl;
        }

        cout << "Do you want to stop? (Enter \"y\" or \"Y)" << endl;

        char c = 0;

        do {
            c = getchar();
        } while ((c == '\n') && (c != EOF));

        if (c == 'y' || c == 'Y') {
            endTest = true;
        }

        do {
            c = getchar();
        } while ((c != '\n') && (c != EOF));

    } while (!endTest);
}

这取决于你用它来做什么。 执行无符号长(DWORD)加法或乘法时,最佳解决方案是使用ULARGE_INTEGER。

ULARGE_INTEGER是一个由两个dword组成的结构。全部价值 可以访问为“QuadPart”,而高DWORD访问 作为“HighPart”,低DWORD作为“LowPart”访问。

例如:

DWORD
My Addition(DWORD Value_A, DWORD Value_B)
{
    ULARGE_INTEGER a, b;

    b.LowPart = Value_A;  // A 32 bit value(up to 32 bit)
    b.HighPart = 0;
    a.LowPart = Value_B;  // A 32 bit value(up to 32 bit)
    a.HighPart = 0;

    a.QuadPart += b.QuadPart;

    // If  a.HighPart
    // Then a.HighPart contains the overflow (carry)

    return (a.LowPart + a.HighPart)

    // Any overflow is stored in a.HighPart (up to 32 bits)

从C23开始,标准头文件<stdckdint.h>提供了以下三个类函数宏:

bool ckd_add(type1 *result, type2 a, type3 b);
bool ckd_sub(type1 *result, type2 a, type3 b);
bool ckd_mul(type1 *result, type2 a, type3 b);

其中type1, type2和type3是任何整数类型。这些函数分别以任意精度对a和b进行加、减或乘,并将结果存储在*result中。如果结果不能由type1精确表示,则函数返回true("计算已溢出")。(任意精确是一种错觉;计算速度非常快,自20世纪90年代初以来几乎所有可用的硬件都可以在一个或两个指令内完成。)

重写OP的例子:

unsigned long b, c, c_test;
// ...
if (ckd_mul(&c_test, c, b))
{
    // returned non-zero: there has been an overflow
}
else
{
    c = c_test; // returned 0: no overflow
}

C_test包含所有情况下可能溢出的乘法结果。

早在C23之前,GCC 5+和Clang 3.8+就提供了以同样方式工作的内置程序,除了结果指针是最后传递而不是第一个传递:__builtin_add_overflow, __builtin_sub_overflow和__builtin_mul_overflow。这些也适用于小于int的类型。

unsigned long b, c, c_test;
// ...
if (__builtin_mul_overflow(c, b, &c_test))
{
    // returned non-zero: there has been an overflow
}
else
{
    c = c_test; // returned 0: no overflow
}

Clang 3.4+引入了具有固定类型的算术溢出内置函数,但它们的灵活性要低得多,而且Clang 3.8现在已经可用很长时间了。如果你需要使用__builtin_umull_overflow,尽管有更方便的更新选项。

Visual Studio的cl.exe没有直接的等价物。对于无符号加减法,包括<intrin.h>将允许您使用addcarry_uNN和subborrow_uNN(其中NN是位数,如addcarry_u8或subborrow_u64)。他们的签名有点迟钝:

unsigned char _addcarry_u32(unsigned char c_in, unsigned int src1, unsigned int src2, unsigned int *sum);
unsigned char _subborrow_u32(unsigned char b_in, unsigned int src1, unsigned int src2, unsigned int *diff);

C_in /b_in是输入的进位/借位标志,返回值是输出的进位/借位。它似乎没有符号运算或乘法的等价物。

另外,Clang for Windows现在已经可以投入生产(对于Chrome来说已经足够好了),所以这也是一个选择。


另一种使用汇编语言的解决方案是外部过程。下面是在Linux x64下使用g++和fasm进行无符号整数乘法的示例。

这个过程将两个无符号整数参数相乘(32位)(根据amd64的规范(第3.2.3节参数传递)。

如果类为INTEGER,则使用序列%rdi、%rsi、%rdx、%rcx、%r8和%r9的下一个可用寄存器

(edi和esi寄存器在我的代码)),并返回结果或0,如果发生溢出。

format ELF64

section '.text' executable

public u_mul

u_mul:
  MOV eax, edi
  mul esi
  jnc u_mul_ret
  xor eax, eax
u_mul_ret:
ret

测试:

extern "C" unsigned int u_mul(const unsigned int a, const unsigned int b);

int main() {
    printf("%u\n", u_mul(4000000000,2)); // 0
    printf("%u\n", u_mul(UINT_MAX/2,2)); // OK
    return 0;
}

将程序链接到asm对象文件。在我的例子中,在Qt Creator中将它添加到一个.pro文件中的LIBS中。


#include <stdio.h>
#include <stdlib.h>

#define MAX 100 

int mltovf(int a, int b)
{
    if (a && b) return abs(a) > MAX/abs(b);
    else return 0;
}

main()
{
    int a, b;

    for (a = 0; a <= MAX; a++)
        for (b = 0; b < MAX; b++) {

        if (mltovf(a, b) != (a*b > MAX)) 
            printf("Bad calculation: a: %d b: %d\n", a, b);

    }
}

要以一种可移植的方式执行无符号乘法而不溢出,可以使用以下方法:

... /* begin multiplication */
unsigned multiplicand, multiplier, product, productHalf;
int zeroesMultiplicand, zeroesMultiplier;
zeroesMultiplicand = number_of_leading_zeroes( multiplicand );
zeroesMultiplier   = number_of_leading_zeroes( multiplier );
if( zeroesMultiplicand + zeroesMultiplier <= 30 ) goto overflow;
productHalf = multiplicand * ( c >> 1 );
if( (int)productHalf < 0 ) goto overflow;
product = productHalf * 2;
if( multiplier & 1 ){
   product += multiplicand;
   if( product < multiplicand ) goto overflow;
}
..../* continue code here where "product" is the correct product */
....
overflow: /* put overflow handling code here */

int number_of_leading_zeroes( unsigned value ){
   int ctZeroes;
   if( value == 0 ) return 32;
   ctZeroes = 1;
   if( ( value >> 16 ) == 0 ){ ctZeroes += 16; value = value << 16; }
   if( ( value >> 24 ) == 0 ){ ctZeroes +=  8; value = value <<  8; }
   if( ( value >> 28 ) == 0 ){ ctZeroes +=  4; value = value <<  4; }
   if( ( value >> 30 ) == 0 ){ ctZeroes +=  2; value = value <<  2; }
   ctZeroes -= x >> 31;
   return ctZeroes;
}

x86指令集包括一个无符号乘法指令,它将结果存储到两个寄存器中。要使用C中的指令,可以在64位程序(GCC)中编写以下代码:

unsigned long checked_imul(unsigned long a, unsigned long b) {
  unsigned __int128 res = (unsigned __int128)a * b;
  if ((unsigned long)(res >> 64))
    printf("overflow in integer multiply");
  return (unsigned long)res;
}

对于32位程序,需要使结果为64位,参数为32位。

另一种方法是使用依赖于编译器的intrinsic来检查标志寄存器。关于溢出的GCC文档可以从6.56内置函数执行溢出检查算术中找到。


mozilla::CheckedInt<T>为整数类型T提供溢出检查的整数数学(使用clang和gcc上可用的编译器intrinsic)。该代码是在MPL 2.0下编写的,并且依赖于三个(integertypetrait .h, Attributes.h和Compiler.h)其他仅针对标头的非标准库标头以及mozilla特定的断言机制。如果导入代码,可能需要替换断言机制。