我用c++写了一个程序来寻找ab = C的所有解,其中a, b和C一起使用所有的数字0-9,只使用一次。程序循环遍历a和b的值,并每次对a、b和ab运行数字计数例程,以检查是否满足数字条件。

但是,当ab超出整数限制时,会产生伪解。我最终使用如下代码来检查这个:

unsigned long b, c, c_test;
...
c_test=c*b;         // Possible overflow
if (c_test/b != c) {/* There has been an overflow*/}
else c=c_test;      // No overflow

是否有更好的方法来测试溢出?我知道有些芯片有一个内部标志,在溢出发生时设置,但我从未见过通过C或c++访问它。


注意,有符号int溢出在C和c++中是未定义的行为,因此您必须在不实际引起它的情况下检测它。对于加法前的有符号整型溢出,请参见在C/ c++中检测有符号溢出。


当前回答

I see that a lot of people answered the question about overflow, but I wanted to address his original problem. He said the problem was to find ab=c such that all digits are used without repeating. Ok, that's not what he asked in this post, but I'm still think that it was necessary to study the upper bound of the problem and conclude that he would never need to calculate or detect an overflow (note: I'm not proficient in math so I did this step by step, but the end result was so simple that this might have a simple formula).

重点是问题要求的a b c的上限是98.765.432。不管怎样,先把问题分成琐碎部分和非琐碎部分:

X0 == 1(9、8、7、6、5、4、3、2的所有排列都是解) X1 == x(无解) 0b == 0(不可能解) 1b == 1(无解) Ab, a > 1, b > 1(非平凡)

Now we just need to show that no other solution is possible and only the permutations are valid (and then the code to print them is trivial). We go back to the upper bound. Actually the upper bound is c ≤ 98.765.432. It's the upper bound because it's the largest number with 8 digits (10 digits total minus 1 for each a and b). This upper bound is only for c because the bounds for a and b must be much lower because of the exponential growth, as we can calculate, varying b from 2 to the upper bound:

    9938.08^2 == 98765432
    462.241^3 == 98765432
    99.6899^4 == 98765432
    39.7119^5 == 98765432
    21.4998^6 == 98765432
    13.8703^7 == 98765432
    9.98448^8 == 98765432
    7.73196^9 == 98765432
    6.30174^10 == 98765432
    5.33068^11 == 98765432
    4.63679^12 == 98765432
    4.12069^13 == 98765432
    3.72429^14 == 98765432
    3.41172^15 == 98765432
    3.15982^16 == 98765432
    2.95305^17 == 98765432
    2.78064^18 == 98765432
    2.63493^19 == 98765432
    2.51033^20 == 98765432
    2.40268^21 == 98765432
    2.30883^22 == 98765432
    2.22634^23 == 98765432
    2.15332^24 == 98765432
    2.08826^25 == 98765432
    2.02995^26 == 98765432
    1.97741^27 == 98765432

注意,例如最后一行:它说1.97^27 ~98M。因此,例如,1^27 == 1和2^27 == 134.217.728,这不是一个解决方案,因为它有9位数字(2 > 1.97,所以它实际上比应该测试的要大)。可以看到,用于测试a和b的组合非常小。对于b == 14,我们需要尝试2和3。对于b == 3,我们从2开始,到462结束。结果均小于~98M。

现在只需测试以上所有的组合,找出不重复任何数字的组合:

    ['0', '2', '4', '5', '6', '7', '8'] 84^2 = 7056
    ['1', '2', '3', '4', '5', '8', '9'] 59^2 = 3481
    ['0', '1', '2', '3', '4', '5', '8', '9'] 59^2 = 3481 (+leading zero)
    ['1', '2', '3', '5', '8'] 8^3 = 512
    ['0', '1', '2', '3', '5', '8'] 8^3 = 512 (+leading zero)
    ['1', '2', '4', '6'] 4^2 = 16
    ['0', '1', '2', '4', '6'] 4^2 = 16 (+leading zero)
    ['1', '2', '4', '6'] 2^4 = 16
    ['0', '1', '2', '4', '6'] 2^4 = 16 (+leading zero)
    ['1', '2', '8', '9'] 9^2 = 81
    ['0', '1', '2', '8', '9'] 9^2 = 81 (+leading zero)
    ['1', '3', '4', '8'] 3^4 = 81
    ['0', '1', '3', '4', '8'] 3^4 = 81 (+leading zero)
    ['2', '3', '6', '7', '9'] 3^6 = 729
    ['0', '2', '3', '6', '7', '9'] 3^6 = 729 (+leading zero)
    ['2', '3', '8'] 2^3 = 8
    ['0', '2', '3', '8'] 2^3 = 8 (+leading zero)
    ['2', '3', '9'] 3^2 = 9
    ['0', '2', '3', '9'] 3^2 = 9 (+leading zero)
    ['2', '4', '6', '8'] 8^2 = 64
    ['0', '2', '4', '6', '8'] 8^2 = 64 (+leading zero)
    ['2', '4', '7', '9'] 7^2 = 49
    ['0', '2', '4', '7', '9'] 7^2 = 49 (+leading zero)

没有一个匹配问题(这也可以通过缺少'0','1',…“9”)。

下面是解决该问题的示例代码。还要注意,这是用Python编写的,不是因为它需要任意精确整数(代码不会计算任何大于9800万的数字),而是因为我们发现测试的数量非常少,所以我们应该使用高级语言来利用其内置的容器和库(还要注意:代码有28行)。

    import math

    m = 98765432
    l = []
    for i in xrange(2, 98765432):
        inv = 1.0/i
        r = m**inv
        if (r < 2.0): break
        top = int(math.floor(r))
        assert(top <= m)

        for j in xrange(2, top+1):
            s = str(i) + str(j) + str(j**i)
            l.append((sorted(s), i, j, j**i))
            assert(j**i <= m)

    l.sort()
    for s, i, j, ji in l:
        assert(ji <= m)
        ss = sorted(set(s))
        if s == ss:
            print '%s %d^%d = %d' % (s, i, j, ji)

        # Try with non significant zero somewhere
        s = ['0'] + s
        ss = sorted(set(s))
        if s == ss:
            print '%s %d^%d = %d (+leading zero)' % (s, i, j, ji)

其他回答

salter先生的回答是个好主意。

如果整数计算是必需的(为了精度),但浮点数是可用的,你可以这样做:

uint64_t foo(uint64_t a, uint64_t b) {
    double dc;

    dc = pow(a, b);

    if (dc < UINT_MAX) {
       return (powu64(a, b));
    }
    else {
      // Overflow
    }
}

不能从C/ c++中访问溢出标志。

我不同意这种说法。您可以编写一些内联汇编语言并使用jo(跳转溢出)指令,假设您在x86上捕获溢出。当然,您的代码将不再能够移植到其他体系结构。

查看info as和info gcc。

I see that a lot of people answered the question about overflow, but I wanted to address his original problem. He said the problem was to find ab=c such that all digits are used without repeating. Ok, that's not what he asked in this post, but I'm still think that it was necessary to study the upper bound of the problem and conclude that he would never need to calculate or detect an overflow (note: I'm not proficient in math so I did this step by step, but the end result was so simple that this might have a simple formula).

重点是问题要求的a b c的上限是98.765.432。不管怎样,先把问题分成琐碎部分和非琐碎部分:

X0 == 1(9、8、7、6、5、4、3、2的所有排列都是解) X1 == x(无解) 0b == 0(不可能解) 1b == 1(无解) Ab, a > 1, b > 1(非平凡)

Now we just need to show that no other solution is possible and only the permutations are valid (and then the code to print them is trivial). We go back to the upper bound. Actually the upper bound is c ≤ 98.765.432. It's the upper bound because it's the largest number with 8 digits (10 digits total minus 1 for each a and b). This upper bound is only for c because the bounds for a and b must be much lower because of the exponential growth, as we can calculate, varying b from 2 to the upper bound:

    9938.08^2 == 98765432
    462.241^3 == 98765432
    99.6899^4 == 98765432
    39.7119^5 == 98765432
    21.4998^6 == 98765432
    13.8703^7 == 98765432
    9.98448^8 == 98765432
    7.73196^9 == 98765432
    6.30174^10 == 98765432
    5.33068^11 == 98765432
    4.63679^12 == 98765432
    4.12069^13 == 98765432
    3.72429^14 == 98765432
    3.41172^15 == 98765432
    3.15982^16 == 98765432
    2.95305^17 == 98765432
    2.78064^18 == 98765432
    2.63493^19 == 98765432
    2.51033^20 == 98765432
    2.40268^21 == 98765432
    2.30883^22 == 98765432
    2.22634^23 == 98765432
    2.15332^24 == 98765432
    2.08826^25 == 98765432
    2.02995^26 == 98765432
    1.97741^27 == 98765432

注意,例如最后一行:它说1.97^27 ~98M。因此,例如,1^27 == 1和2^27 == 134.217.728,这不是一个解决方案,因为它有9位数字(2 > 1.97,所以它实际上比应该测试的要大)。可以看到,用于测试a和b的组合非常小。对于b == 14,我们需要尝试2和3。对于b == 3,我们从2开始,到462结束。结果均小于~98M。

现在只需测试以上所有的组合,找出不重复任何数字的组合:

    ['0', '2', '4', '5', '6', '7', '8'] 84^2 = 7056
    ['1', '2', '3', '4', '5', '8', '9'] 59^2 = 3481
    ['0', '1', '2', '3', '4', '5', '8', '9'] 59^2 = 3481 (+leading zero)
    ['1', '2', '3', '5', '8'] 8^3 = 512
    ['0', '1', '2', '3', '5', '8'] 8^3 = 512 (+leading zero)
    ['1', '2', '4', '6'] 4^2 = 16
    ['0', '1', '2', '4', '6'] 4^2 = 16 (+leading zero)
    ['1', '2', '4', '6'] 2^4 = 16
    ['0', '1', '2', '4', '6'] 2^4 = 16 (+leading zero)
    ['1', '2', '8', '9'] 9^2 = 81
    ['0', '1', '2', '8', '9'] 9^2 = 81 (+leading zero)
    ['1', '3', '4', '8'] 3^4 = 81
    ['0', '1', '3', '4', '8'] 3^4 = 81 (+leading zero)
    ['2', '3', '6', '7', '9'] 3^6 = 729
    ['0', '2', '3', '6', '7', '9'] 3^6 = 729 (+leading zero)
    ['2', '3', '8'] 2^3 = 8
    ['0', '2', '3', '8'] 2^3 = 8 (+leading zero)
    ['2', '3', '9'] 3^2 = 9
    ['0', '2', '3', '9'] 3^2 = 9 (+leading zero)
    ['2', '4', '6', '8'] 8^2 = 64
    ['0', '2', '4', '6', '8'] 8^2 = 64 (+leading zero)
    ['2', '4', '7', '9'] 7^2 = 49
    ['0', '2', '4', '7', '9'] 7^2 = 49 (+leading zero)

没有一个匹配问题(这也可以通过缺少'0','1',…“9”)。

下面是解决该问题的示例代码。还要注意,这是用Python编写的,不是因为它需要任意精确整数(代码不会计算任何大于9800万的数字),而是因为我们发现测试的数量非常少,所以我们应该使用高级语言来利用其内置的容器和库(还要注意:代码有28行)。

    import math

    m = 98765432
    l = []
    for i in xrange(2, 98765432):
        inv = 1.0/i
        r = m**inv
        if (r < 2.0): break
        top = int(math.floor(r))
        assert(top <= m)

        for j in xrange(2, top+1):
            s = str(i) + str(j) + str(j**i)
            l.append((sorted(s), i, j, j**i))
            assert(j**i <= m)

    l.sort()
    for s, i, j, ji in l:
        assert(ji <= m)
        ss = sorted(set(s))
        if s == ss:
            print '%s %d^%d = %d' % (s, i, j, ji)

        # Try with non significant zero somewhere
        s = ['0'] + s
        ss = sorted(set(s))
        if s == ss:
            print '%s %d^%d = %d (+leading zero)' % (s, i, j, ji)

另一个有趣的工具是IOC: C/ c++的整数溢出检查器。

这是一个修补过的Clang编译器,它在编译时向代码添加检查。

输出如下所示:

CLANG ARITHMETIC UNDEFINED at <add.c, (9:11)> :
Op: +, Reason : Signed Addition Overflow,
BINARY OPERATION: left (int32): 2147483647 right (int32): 1

CERT开发了一种新方法,使用“as-if”无限范围(AIR)整数模型来检测和报告有符号整数溢出、无符号整数包装和整数截断。CERT已经发布了一份描述该模型的技术报告,并生成了一个基于GCC 4.4.0和GCC 4.5.0的工作原型。

AIR整数模型产生的值与使用无限范围整数所获得的值相等,或者导致违反运行时约束。与之前的整数模型不同,AIR整数不需要精确的陷阱,因此不会破坏或抑制大多数现有的优化。