我是c++ 11的新手。我正在写下面的递归lambda函数,但它不能编译。

sum.cpp

#include <iostream>
#include <functional>

auto term = [](int a)->int {
  return a*a;
};

auto next = [](int a)->int {
  return ++a;
};

auto sum = [term,next,&sum](int a, int b)mutable ->int {
  if(a>b)
    return 0;
  else
    return term(a) + sum(next(a),b);
};

int main(){
  std::cout<<sum(1,10)<<std::endl;
  return 0;
}

编译错误:

vimal@linux-718q:~/Study/09C++/c++0x/lambda> g++ -std=c++0x sum.cpp

sum.cpp:在lambda函数中 sum.cpp:18:36:错误:' ((<lambda(int, int)>*)this)-><lambda(int, int)>::sum '不能用作函数

gcc版本

gcc版本4.5.0 20091231(实验性)(gcc)

但如果我改变sum()的声明如下所示,它可以工作:

std::function<int(int,int)> sum = [term,next,&sum](int a, int b)->int {
   if(a>b)
     return 0;
   else
     return term(a) + sum(next(a),b);
};

有人能解释一下吗?


您正在尝试捕获正在定义的变量(sum)。那可不太好。

我不认为真正的自递归c++ 0x是可能的。不过,您应该能够捕获其他lambda。


考虑一下自动版本和完全指定类型版本之间的区别。auto关键字从初始化它的对象推断它的类型,但是初始化它的对象需要知道它的类型(在本例中,lambda闭包需要知道它捕获的类型)。有点像鸡生蛋还是蛋生鸡的问题。

另一方面,完全指定的函数对象的类型不需要“知道”任何被赋值给它的内容,因此lambda闭包同样可以完全知道它捕获的类型。

考虑一下对代码的轻微修改,它可能更有意义:

std::function<int(int, int)> sum;

sum = [term, next, &sum](int a, int b) -> int {
    if (a > b)
        return 0;
    else
        return term(a) + sum(next(a), b);
};

显然,这在auto中行不通。递归lambda函数工作得非常好(至少它们在MSVC中是这样的,我在MSVC中有使用它们的经验),只是它们与类型推断并不真正兼容。


你需要一个不动点组合器。看到这个。

或者看看下面的代码:

//As decltype(variable)::member_name is invalid currently, 
//the following template is a workaround.
//Usage: t2t<decltype(variable)>::t::member_name
template<typename T>
struct t2t
{
    typedef T t;
};

template<typename R, typename V>
struct fixpoint
{
    typedef std::function<R (V)> func_t;
    typedef std::function<func_t (func_t)> tfunc_t;
    typedef std::function<func_t (tfunc_t)> yfunc_t;

    class loopfunc_t {
    public:
        func_t operator()(loopfunc_t v)const {
            return func(v);
        }
        template<typename L>
        loopfunc_t(const L &l):func(l){}
        typedef V Parameter_t;
    private:
        std::function<func_t (loopfunc_t)> func;
    };
    static yfunc_t fix;
};
template<typename R, typename V>
typename fixpoint<R, V>::yfunc_t fixpoint<R, V>::fix = 
[](fixpoint<R, V>::tfunc_t f) -> fixpoint<R, V>::func_t {
    fixpoint<R, V>::loopfunc_t l = [f](fixpoint<R, V>::loopfunc_t x) ->
        fixpoint<R, V>::func_t{
            //f cannot be captured since it is not a local variable
            //of this scope. We need a new reference to it.
            auto &ff = f;
            //We need struct t2t because template parameter
            //V is not accessable in this level.
            return [ff, x](t2t<decltype(x)>::t::Parameter_t v){
                return ff(x(x))(v); 
            };
        }; 
        return l(l);
    };

int _tmain(int argc, _TCHAR* argv[])
{
    int v = 0;
    std::function<int (int)> fac = 
    fixpoint<int, int>::fix([](std::function<int (int)> f)
        -> std::function<int (int)>{
        return [f](int i) -> int{
            if(i==0) return 1;
            else return i * f(i-1);
        };
    });

    int i = fac(10);
    std::cout << i; //3628800
    return 0;
}

这里是op的最终答案。无论如何,Visual Studio 2010不支持捕获全局变量。您不需要捕获它们,因为全局变量可以通过define全局访问。下面的答案使用局部变量代替。

#include <functional>
#include <iostream>

template<typename T>
struct t2t
{
    typedef T t;
};

template<typename R, typename V1, typename V2>
struct fixpoint
{
    typedef std::function<R (V1, V2)> func_t;
    typedef std::function<func_t (func_t)> tfunc_t;
    typedef std::function<func_t (tfunc_t)> yfunc_t;

    class loopfunc_t {
    public:
        func_t operator()(loopfunc_t v)const {
            return func(v);
        }
        template<typename L>
        loopfunc_t(const L &l):func(l){}
        typedef V1 Parameter1_t;
        typedef V2 Parameter2_t;
    private:
        std::function<func_t (loopfunc_t)> func;
    };
    static yfunc_t fix;
};
template<typename R, typename V1, typename V2>
typename fixpoint<R, V1, V2>::yfunc_t fixpoint<R, V1, V2>::fix = [](tfunc_t f) -> func_t {
    return [f](fixpoint<R, V1, V2>::loopfunc_t x){  return f(x(x)); }
    ([f](fixpoint<R, V1, V2>::loopfunc_t x) -> fixpoint<R, V1, V2>::func_t{
        auto &ff = f;
        return [ff, x](t2t<decltype(x)>::t::Parameter1_t v1, 
            t2t<decltype(x)>::t::Parameter1_t v2){
            return ff(x(x))(v1, v2);
        }; 
    });
};

int _tmain(int argc, _TCHAR* argv[])
{
    auto term = [](int a)->int {
      return a*a;
    };

    auto next = [](int a)->int {
      return ++a;
    };

    auto sum = fixpoint<int, int, int>::fix(
    [term,next](std::function<int (int, int)> sum1) -> std::function<int (int, int)>{
        auto &term1 = term;
        auto &next1 = next;
        return [term1, next1, sum1](int a, int b)mutable ->int {
            if(a>b)
                return 0;
        else
            return term1(a) + sum1(next1(a),b);
        };
    });

    std::cout<<sum(1,10)<<std::endl; //385

    return 0;
}

你可以递归地调用lambda函数本身。您唯一需要做的是通过函数包装器引用它,以便编译器知道它的返回值和参数类型(您不能捕获尚未定义的变量——lambda本身)。

  function<int (int)> f;

  f = [&f](int x) {
    if (x == 0) return 0;
    return x + f(x-1);
  };

  printf("%d\n", f(10));

要非常小心,不要超出包装器f的范围。


我有另一个解决方案,但只与无状态lambdas工作:

void f()
{
    static int (*self)(int) = [](int i)->int { return i>0 ? self(i-1)*i : 1; };
    std::cout<<self(10);
}

这里的技巧是lambdas可以访问静态变量,并且可以将无状态变量转换为函数指针。

你可以在标准的lambdas中使用它:

void g()
{
    int sum;
    auto rec = [&sum](int i) -> int
    {
        static int (*inner)(int&, int) = [](int& _sum, int i)->int 
        {
            _sum += i;
            return i>0 ? inner(_sum, i-1)*i : 1; 
        };
        return inner(sum, i);
    };
}

它在GCC 4.7中的工作


这是一个稍微简单的固定点操作符的实现,这使得它更明显地发生了什么。

#include <iostream>
#include <functional>

using namespace std;

template<typename T, typename... Args>
struct fixpoint
{
    typedef function<T(Args...)> effective_type;
    typedef function<T(const effective_type&, Args...)> function_type;

    function_type f_nonr;

    T operator()(Args... args) const
    {
        return f_nonr(*this, args...);
    }

    fixpoint(const function_type& p_f)
        : f_nonr(p_f)
    {
    }
};


int main()
{
    auto fib_nonr = [](const function<int(int)>& f, int n) -> int
    {
        return n < 2 ? n : f(n-1) + f(n-2);
    };

    auto fib = fixpoint<int,int>(fib_nonr);

    for (int i = 0; i < 6; ++i)
    {
        cout << fib(i) << '\n';
    }
}

我使用std::function<>捕获方法运行了一个基准测试,比较递归函数和递归lambda函数。在clang版本4.1上启用了完全优化后,lambda版本的运行速度明显变慢了。

#include <iostream>
#include <functional>
#include <chrono>

uint64_t sum1(int n) {
  return (n <= 1) ? 1 : n + sum1(n - 1);
}

std::function<uint64_t(int)> sum2 = [&] (int n) {
  return (n <= 1) ? 1 : n + sum2(n - 1);
};

auto const ITERATIONS = 10000;
auto const DEPTH = 100000;

template <class Func, class Input>
void benchmark(Func&& func, Input&& input) {
  auto t1 = std::chrono::high_resolution_clock::now();
  for (auto i = 0; i != ITERATIONS; ++i) {
    func(input);
  }
  auto t2 = std::chrono::high_resolution_clock::now();
  auto duration = std::chrono::duration_cast<std::chrono::milliseconds>(t2-t1).count();
  std::cout << "Duration: " << duration << std::endl;
}

int main() {
  benchmark(sum1, DEPTH);
  benchmark(sum2, DEPTH);
}

产生的结果:

Duration: 0 // regular function
Duration: 4027 // lambda function

(注意:我还确认了一个从cin获取输入的版本,以消除编译时计算)

Clang还会产生一个编译器警告:

main.cc:10:29: warning: variable 'sum2' is uninitialized when used within its own initialization [-Wuninitialized]

这是意料之中的,也是安全的,但应该注意。

在我们的工具中有一个解决方案是很好的,但我认为如果要与当前的方法相比,该语言需要更好的方法来处理这种情况。

注意:

正如一位评论者指出的那样,最新版本的vc++似乎已经找到了一种方法来优化这一点,以达到同等的性能。也许我们不需要更好的方法来处理这个问题(除了语法糖)。

另外,正如最近几周其他一些SO帖子所概述的那样,std::function<>本身的性能可能是导致直接调用function速度变慢的原因,至少当lambda捕获太大而无法放入一些库优化的空间时(我猜有点像各种短字符串优化?)


这个答案不如扬克斯的,但还是这样:

using dp_type = void (*)();

using fp_type = void (*)(dp_type, unsigned, unsigned);

fp_type fp = [](dp_type dp, unsigned const a, unsigned const b) {
  ::std::cout << a << ::std::endl;
  return reinterpret_cast<fp_type>(dp)(dp, b, a + b);
};

fp(reinterpret_cast<dp_type>(fp), 0, 1);

诀窍是将lambda实现作为参数提供给自身,而不是通过捕获。

const auto sum = [term, next](int a, int b) {
    auto sum_impl = [term, next](int a, int b, auto& sum_ref) mutable {
        if (a > b) {
            return 0;
        }
        return term(a) + sum_ref(next(a), b, sum_ref);
    };
    return sum_impl(a, b, sum_impl);
};

计算机科学中的所有问题都可以通过另一种间接方式来解决。我第一次发现这个简单的技巧是在http://pedromelendez.com/blog/2015/07/16/recursive-lambdas-in-c14/

它确实需要c++ 14,而问题是c++ 11,但对大多数人来说可能很有趣。

这是戈德波特大学的完整例子。

使用std::function也是可能的,但会导致代码变慢。但并非总是如此。看看std::function vs template的答案


这不仅仅是c++的特性, 它直接映射到微积分的数学中。从维基百科:

Lambda微积分不能像其他表达式那样直接表示这个 符号: 所有的函数在微积分中都是匿名的,所以我们不能引用a 还没有定义的值,在定义它的lambda项中 相同的值。但是,递归仍然可以通过排列 Lambda表达式接收自身作为参数值


在c++ 14中,现在很容易创建一个有效的递归lambda,而不必引起std::function的额外开销,只需几行代码:

template <class F>
struct y_combinator {
    F f; // the lambda will be stored here
    
    // a forwarding operator():
    template <class... Args>
    decltype(auto) operator()(Args&&... args) const {
        // we pass ourselves to f, then the arguments.
        return f(*this, std::forward<Args>(args)...);
    }
};

// helper function that deduces the type of the lambda:
template <class F>
y_combinator<std::decay_t<F>> make_y_combinator(F&& f) {
    return {std::forward<F>(f)};
}

你原来的求和尝试变成:

auto sum = make_y_combinator([term,next](auto sum, int a, int b) -> int {
  if (a>b) {
    return 0;
  }
  else {
    return term(a) + sum(next(a),b);
  }
});

在c++ 17中,使用CTAD,我们可以添加演绎指南:

template <class F> y_combinator(F) -> y_combinator<F>;

这样就不需要辅助函数了。我们可以写y_combinator{[](auto self,…){…直接}}。


在c++ 20中,使用CTAD进行聚合,就不需要演绎指南了。


在c++ 23中,通过演绎,你根本不需要y组合子:

auto sum = [term,next](this auto const& sum, int a, int b) -> int {
  if (a>b) {
    return 0;
  }
  else {
    return term(a) + sum(next(a),b);
  }
}

要使lambda递归而不使用外部类和函数(如std::function或定点组合子),可以在c++ 14中使用以下结构(现场示例):

#include <utility>
#include <list>
#include <memory>
#include <iostream>

int main()
{
    struct tree
    {
        int payload;
        std::list< tree > children = {}; // std::list of incomplete type is allowed
    };
    std::size_t indent = 0;
    // indication of result type here is essential
    const auto print = [&] (const auto & self, const tree & node) -> void
    {
        std::cout << std::string(indent, ' ') << node.payload << '\n';
        ++indent;
        for (const tree & t : node.children) {
            self(self, t);
        }
        --indent;
    };
    print(print, {1, {{2, {{8}}}, {3, {{5, {{7}}}, {6}}}, {4}}});
}

打印:

1
 2
  8
 3
  5
   7
  6
 4

注意,lambda的结果类型应该显式指定。


c++ 14: 这是lambdas的递归匿名无状态/无捕获泛型集 输出从1,20开始的所有数字

([](auto f, auto n, auto m) {
    f(f, n, m);
})(
    [](auto f, auto n, auto m) -> void
{
    cout << typeid(n).name() << el;
    cout << n << el;
    if (n<m)
        f(f, ++n, m);
},
    1, 20);

如果我没理解错,这是用y组合子解

这是(n, m)的和

auto sum = [](auto n, auto m) {
    return ([](auto f, auto n, auto m) {
        int res = f(f, n, m);
        return res;
    })(
        [](auto f, auto n, auto m) -> int
        {
            if (n > m)
                return 0;
            else {
                int sum = n + f(f, n + 1, m);
                return sum;
            }
        },
        n, m); };

auto result = sum(1, 10); //result == 55

下面是基于@Barry提出的y组合子解决方案的改进版本。

template <class F>
struct recursive {
  F f;
  template <class... Ts>
  decltype(auto) operator()(Ts&&... ts)  const { return f(std::ref(*this), std::forward<Ts>(ts)...); }

  template <class... Ts>
  decltype(auto) operator()(Ts&&... ts)  { return f(std::ref(*this), std::forward<Ts>(ts)...); }
};

template <class F> recursive(F) -> recursive<F>;
auto const rec = [](auto f){ return recursive{std::move(f)}; };

要使用它,可以执行以下操作

auto fib = rec([&](auto&& fib, int i) {
// implementation detail omitted.
});

它类似于OCaml中的let rec关键字,尽管不相同。


在c++ 23中,扣除这个(P0847)将被添加:

auto f = [](this auto& self, int i) -> int
{
    return i > 0 ? self(i - 1) + i : 0;
}

目前它只在EDG eccp和(部分)MSVC可用:

https://godbolt.org/z/f3E3xT3fY


这里证明了一个小主体的递归lambda几乎具有与普通递归函数相同的性能,可以直接调用自己。

#include <iostream>
#include <chrono>
#include <type_traits>
#include <functional>
#include <atomic>
#include <cmath>

using namespace std;
using namespace chrono;

unsigned recursiveFn( unsigned x )
{
    if( x ) [[likely]]
        return recursiveFn( x - 1 ) + recursiveFn( x - 1 );
    else
        return 0;
};

atomic_uint result;

int main()
{
    auto perf = []( function<void ()> fn ) -> double
    {
        using dur_t = high_resolution_clock::duration;
        using urep_t = make_unsigned_t<dur_t::rep>;
        high_resolution_clock::duration durMin( (urep_t)-1 >> 1 );
        for( unsigned r = 10; r--; )
        {
            auto start = high_resolution_clock::now();
            fn();
            dur_t dur = high_resolution_clock::now() - start;
            if( dur < durMin )
                durMin = dur;
        }
        return durMin.count() / 1.0e9;
    };
    auto recursiveLamdba = []( auto &self, unsigned x ) -> unsigned
    {
        if( x ) [[likely]]
            return self( self, x - 1 ) + self( self, x - 1 );
        else
            return 0;
    };
    constexpr unsigned DEPTH = 28;
    double
        tLambda = perf( [&]() { ::result = recursiveLamdba( recursiveLamdba, DEPTH ); } ),
        tFn = perf( [&]() { ::result = recursiveFn( DEPTH ); } );
    cout << trunc( 1000.0 * (tLambda / tFn - 1.0) + 0.5 ) / 10.0 << "%" << endl;
}

对于我的AMD Zen1 CPU,目前的MSVC递归速度快10%左右。对于我的Phenom II x4 945和g++ 11.1。这两个函数有相同的性能。 请记住,这几乎是最糟糕的情况,因为函数体非常小。如果它更大,递归函数调用本身的部分就更小。