我用c++写了一个程序来寻找ab = C的所有解,其中a, b和C一起使用所有的数字0-9,只使用一次。程序循环遍历a和b的值,并每次对a、b和ab运行数字计数例程,以检查是否满足数字条件。

但是,当ab超出整数限制时,会产生伪解。我最终使用如下代码来检查这个:

unsigned long b, c, c_test;
...
c_test=c*b;         // Possible overflow
if (c_test/b != c) {/* There has been an overflow*/}
else c=c_test;      // No overflow

是否有更好的方法来测试溢出?我知道有些芯片有一个内部标志,在溢出发生时设置,但我从未见过通过C或c++访问它。


注意,有符号int溢出在C和c++中是未定义的行为,因此您必须在不实际引起它的情况下检测它。对于加法前的有符号整型溢出,请参见在C/ c++中检测有符号溢出。


当前回答

测试溢出的简单方法是通过检查当前值是否小于前一个值来进行验证。例如,假设你有一个循环输出2的幂:

long lng;
int n;
for (n = 0; n < 34; ++n)
{
   lng = pow (2, n);
   printf ("%li\n", lng);
}

添加溢出检查的方式,我描述的结果如下:

long signed lng, lng_prev = 0;
int n;
for (n = 0; n < 34; ++n)
{
    lng = pow (2, n);
    if (lng <= lng_prev)
    {
        printf ("Overflow: %i\n", n);
        /* Do whatever you do in the event of overflow.  */
    }
    printf ("%li\n", lng);
    lng_prev = lng;
}

它既适用于无符号值,也适用于正负符号值。

当然,如果您想对递减值而不是递增值执行类似的操作,您可以将<=符号翻转,使其为>=,假设下溢的行为与溢出的行为相同。坦率地说,这是在不访问CPU溢出标志的情况下所获得的可移植性(这将需要内联汇编代码,使您的代码在实现之间无法移植)。

其他回答

I see that a lot of people answered the question about overflow, but I wanted to address his original problem. He said the problem was to find ab=c such that all digits are used without repeating. Ok, that's not what he asked in this post, but I'm still think that it was necessary to study the upper bound of the problem and conclude that he would never need to calculate or detect an overflow (note: I'm not proficient in math so I did this step by step, but the end result was so simple that this might have a simple formula).

重点是问题要求的a b c的上限是98.765.432。不管怎样,先把问题分成琐碎部分和非琐碎部分:

X0 == 1(9、8、7、6、5、4、3、2的所有排列都是解) X1 == x(无解) 0b == 0(不可能解) 1b == 1(无解) Ab, a > 1, b > 1(非平凡)

Now we just need to show that no other solution is possible and only the permutations are valid (and then the code to print them is trivial). We go back to the upper bound. Actually the upper bound is c ≤ 98.765.432. It's the upper bound because it's the largest number with 8 digits (10 digits total minus 1 for each a and b). This upper bound is only for c because the bounds for a and b must be much lower because of the exponential growth, as we can calculate, varying b from 2 to the upper bound:

    9938.08^2 == 98765432
    462.241^3 == 98765432
    99.6899^4 == 98765432
    39.7119^5 == 98765432
    21.4998^6 == 98765432
    13.8703^7 == 98765432
    9.98448^8 == 98765432
    7.73196^9 == 98765432
    6.30174^10 == 98765432
    5.33068^11 == 98765432
    4.63679^12 == 98765432
    4.12069^13 == 98765432
    3.72429^14 == 98765432
    3.41172^15 == 98765432
    3.15982^16 == 98765432
    2.95305^17 == 98765432
    2.78064^18 == 98765432
    2.63493^19 == 98765432
    2.51033^20 == 98765432
    2.40268^21 == 98765432
    2.30883^22 == 98765432
    2.22634^23 == 98765432
    2.15332^24 == 98765432
    2.08826^25 == 98765432
    2.02995^26 == 98765432
    1.97741^27 == 98765432

注意,例如最后一行:它说1.97^27 ~98M。因此,例如,1^27 == 1和2^27 == 134.217.728,这不是一个解决方案,因为它有9位数字(2 > 1.97,所以它实际上比应该测试的要大)。可以看到,用于测试a和b的组合非常小。对于b == 14,我们需要尝试2和3。对于b == 3,我们从2开始,到462结束。结果均小于~98M。

现在只需测试以上所有的组合,找出不重复任何数字的组合:

    ['0', '2', '4', '5', '6', '7', '8'] 84^2 = 7056
    ['1', '2', '3', '4', '5', '8', '9'] 59^2 = 3481
    ['0', '1', '2', '3', '4', '5', '8', '9'] 59^2 = 3481 (+leading zero)
    ['1', '2', '3', '5', '8'] 8^3 = 512
    ['0', '1', '2', '3', '5', '8'] 8^3 = 512 (+leading zero)
    ['1', '2', '4', '6'] 4^2 = 16
    ['0', '1', '2', '4', '6'] 4^2 = 16 (+leading zero)
    ['1', '2', '4', '6'] 2^4 = 16
    ['0', '1', '2', '4', '6'] 2^4 = 16 (+leading zero)
    ['1', '2', '8', '9'] 9^2 = 81
    ['0', '1', '2', '8', '9'] 9^2 = 81 (+leading zero)
    ['1', '3', '4', '8'] 3^4 = 81
    ['0', '1', '3', '4', '8'] 3^4 = 81 (+leading zero)
    ['2', '3', '6', '7', '9'] 3^6 = 729
    ['0', '2', '3', '6', '7', '9'] 3^6 = 729 (+leading zero)
    ['2', '3', '8'] 2^3 = 8
    ['0', '2', '3', '8'] 2^3 = 8 (+leading zero)
    ['2', '3', '9'] 3^2 = 9
    ['0', '2', '3', '9'] 3^2 = 9 (+leading zero)
    ['2', '4', '6', '8'] 8^2 = 64
    ['0', '2', '4', '6', '8'] 8^2 = 64 (+leading zero)
    ['2', '4', '7', '9'] 7^2 = 49
    ['0', '2', '4', '7', '9'] 7^2 = 49 (+leading zero)

没有一个匹配问题(这也可以通过缺少'0','1',…“9”)。

下面是解决该问题的示例代码。还要注意,这是用Python编写的,不是因为它需要任意精确整数(代码不会计算任何大于9800万的数字),而是因为我们发现测试的数量非常少,所以我们应该使用高级语言来利用其内置的容器和库(还要注意:代码有28行)。

    import math

    m = 98765432
    l = []
    for i in xrange(2, 98765432):
        inv = 1.0/i
        r = m**inv
        if (r < 2.0): break
        top = int(math.floor(r))
        assert(top <= m)

        for j in xrange(2, top+1):
            s = str(i) + str(j) + str(j**i)
            l.append((sorted(s), i, j, j**i))
            assert(j**i <= m)

    l.sort()
    for s, i, j, ji in l:
        assert(ji <= m)
        ss = sorted(set(s))
        if s == ss:
            print '%s %d^%d = %d' % (s, i, j, ji)

        # Try with non significant zero somewhere
        s = ['0'] + s
        ss = sorted(set(s))
        if s == ss:
            print '%s %d^%d = %d (+leading zero)' % (s, i, j, ji)

不能从C/ c++中访问溢出标志。

我不同意这种说法。您可以编写一些内联汇编语言并使用jo(跳转溢出)指令,假设您在x86上捕获溢出。当然,您的代码将不再能够移植到其他体系结构。

查看info as和info gcc。

测试溢出的简单方法是通过检查当前值是否小于前一个值来进行验证。例如,假设你有一个循环输出2的幂:

long lng;
int n;
for (n = 0; n < 34; ++n)
{
   lng = pow (2, n);
   printf ("%li\n", lng);
}

添加溢出检查的方式,我描述的结果如下:

long signed lng, lng_prev = 0;
int n;
for (n = 0; n < 34; ++n)
{
    lng = pow (2, n);
    if (lng <= lng_prev)
    {
        printf ("Overflow: %i\n", n);
        /* Do whatever you do in the event of overflow.  */
    }
    printf ("%li\n", lng);
    lng_prev = lng;
}

它既适用于无符号值,也适用于正负符号值。

当然,如果您想对递减值而不是递增值执行类似的操作,您可以将<=符号翻转,使其为>=,假设下溢的行为与溢出的行为相同。坦率地说,这是在不访问CPU溢出标志的情况下所获得的可移植性(这将需要内联汇编代码,使您的代码在实现之间无法移植)。

#include <stdio.h>
#include <stdlib.h>

#define MAX 100 

int mltovf(int a, int b)
{
    if (a && b) return abs(a) > MAX/abs(b);
    else return 0;
}

main()
{
    int a, b;

    for (a = 0; a <= MAX; a++)
        for (b = 0; b < MAX; b++) {

        if (mltovf(a, b) != (a*b > MAX)) 
            printf("Bad calculation: a: %d b: %d\n", a, b);

    }
}

一种简单的方法是重写所有操作符(特别是+和*),并在执行操作之前检查是否有溢出。