当我开始学习口齿不清时,我遇到了“尾部递归”这个词。这到底是什么意思?


我不是Lisp程序员,但我认为这会有所帮助。

基本上,这是一种编程风格,递归调用是最后一件事。


使用常规递归,每个递归调用将另一个条目推送到调用堆栈中。递归完成后,应用程序必须将每个条目向下弹出。

使用尾部递归,根据语言的不同,编译器可以将堆栈折叠为一个条目,这样可以节省堆栈空间。。。大型递归查询实际上会导致堆栈溢出。

基本上,尾部递归可以优化到迭代中。


尾部递归是指递归算法中最后一条逻辑指令中的最后一个递归调用。

通常在递归中,您有一个基本情况,即停止递归调用并开始弹出调用堆栈。使用一个经典的例子,尽管比Lisp更具C语言,阶乘函数说明了尾部递归。递归调用在检查基本情况条件后发生。

factorial(x, fac=1) {
  if (x == 1)
     return fac;
   else
     return factorial(x-1, x*fac);
}

对阶乘的初始调用将是阶乘(n),其中fac=1(默认值),n是要计算阶乘的数字。


在传统递归中,典型的模型是首先执行递归调用,然后获取递归调用的返回值并计算结果。通过这种方式,在每次递归调用返回之前,您不会得到计算结果。

在尾部递归中,首先执行计算,然后执行递归调用,将当前步骤的结果传递给下一个递归步骤。这导致最后一条语句的形式为(return(递归函数参数))。基本上,任何给定递归步骤的返回值都与下一个递归调用的返回值相同。

这样做的结果是,一旦准备好执行下一个递归步骤,就不再需要当前堆栈帧。这允许进行一些优化。事实上,使用一个适当编写的编译器,您永远不应该有带有尾部递归调用的堆栈溢出窃笑。只需在下一个递归步骤中重用当前堆栈帧。我很确定Lisp会这么做。


这里有一个例子,而不是用文字来解释。这是阶乘函数的Scheme版本:

(define (factorial x)
  (if (= x 0) 1
      (* x (factorial (- x 1)))))

下面是一个阶乘的尾部递归版本:

(define factorial
  (letrec ((fact (lambda (x accum)
                   (if (= x 0) accum
                       (fact (- x 1) (* accum x))))))
    (lambda (x)
      (fact x 1))))

在第一个版本中,您会注意到对事实的递归调用被馈送到乘法表达式中,因此在进行递归调用时,状态必须保存在堆栈中。在尾部递归版本中,没有其他S表达式等待递归调用的值,并且由于没有进一步的工作要做,状态不必保存在堆栈上。通常,Scheme尾部递归函数使用常数堆栈空间。


术语文件对尾部递归的定义有这样的说法:

尾部递归/n/

如果您还没有厌倦它,请参阅尾部递归。


这本摘自《Lua编程》一书的摘录展示了如何进行正确的尾部递归(在Lua中,但也应适用于Lisp)以及为什么它更好。

尾部调用[尾部递归]是一种goto-dressed作为呼叫。当函数调用另一个作为其最后一个行动,所以它没有其他事情可做。例如在以下代码中,对g的调用是尾调用:函数f(x)返回g(x)终止在f调用g之后,它没有其他内容在这种情况下,程序不需要返回调用函数时调用的函数末端。因此在尾呼之后,程序不需要保留任何有关调用函数的信息在堆栈中。。。因为正确的尾呼使用no堆栈空间一个程序可以生成。例如,我们可以使用任意数字作为自变量;它永远不会溢出堆栈:函数foo(n)如果n>0,则返回foo(n-1)end终止…正如我前面所说的,尾呼是有点后顾之忧。因此,一个非常有用的正确的尾部调用在Lua用于编程状态机。此类应用程序可以代表功能状态;更改状态是去(或打电话)一个特定的作用例如,让我们考虑一个简单的迷宫游戏。迷宫有几个房间,每个房间最多四个门:北、南、东和西在每个步骤中,用户输入移动方向。如果有门在该方向上,用户将相应的房间;否则程序打印警告。目标是从最初的房间到最后的房间房间该游戏是典型的状态机,其中当前房间是状态。我们可以用一个每个房间的功能。我们用尾巴从一个房间移动到另一个有四个房间的小迷宫可能看起来像这样:功能室1()本地移动=io.read()如果移动==“南”,则返回房间3()elseif move==“east”然后返回room2()否则打印(“无效移动”)返回房间1()--呆在同一个房间终止终止功能室2()本地移动=io.read()如果move==“south”,则返回room4()elseif move==“west”然后返回房间1()否则打印(“无效移动”)返回室2()终止终止功能室3()本地移动=io.read()如果move==“north”,则返回room1()elseif move==“east”然后返回room4()否则打印(“无效移动”)返回室3()终止终止功能室4()打印(“恭喜!”)终止

因此,当您进行如下递归调用时:

function x(n)
  if n==0 then return 0
  n= n-2
  return x(n) + 1
end

这不是尾部递归的,因为在进行递归调用之后,您仍然需要在该函数中做一些事情(添加1)。如果输入的数字很高,可能会导致堆栈溢出。


重要的一点是尾部递归本质上等同于循环。这不仅仅是一个编译器优化的问题,而是一个关于表现力的基本事实。这是双向的:你可以采取任何形式的循环

while(E) { S }; return Q

其中E和Q是表达式,S是语句序列,并将其转换为尾部递归函数

f() = if E then { S; return f() } else { return Q }

当然,必须定义E、S和Q来计算一些变量的有趣值。例如,循环函数

sum(n) {
  int i = 1, k = 0;
  while( i <= n ) {
    k += i;
    ++i;
  }
  return k;
}

等效于尾部递归函数

sum_aux(n,i,k) {
  if( i <= n ) {
    return sum_aux(n,i+1,k+i);
  } else {
    return k;
  }
}

sum(n) {
  return sum_aux(n,1,0);
}

(用参数较少的函数“包装”尾部递归函数是一种常见的函数习惯用法。)


考虑一个将前N个自然数相加的简单函数。(例如,和(5)=0+1+2+3+4+5=15)。

下面是一个使用递归的简单JavaScript实现:

function recsum(x) {
    if (x === 0) {
        return 0;
    } else {
        return x + recsum(x - 1);
    }
}

如果调用recsum(5),JavaScript解释器将评估以下内容:

recsum(5)
5 + recsum(4)
5 + (4 + recsum(3))
5 + (4 + (3 + recsum(2)))
5 + (4 + (3 + (2 + recsum(1))))
5 + (4 + (3 + (2 + (1 + recsum(0)))))
5 + (4 + (3 + (2 + (1 + 0))))
5 + (4 + (3 + (2 + 1)))
5 + (4 + (3 + 3))
5 + (4 + 6)
5 + 10
15

请注意,在JavaScript解释器开始实际计算和之前,每个递归调用都必须完成。

下面是同一函数的尾部递归版本:

function tailrecsum(x, running_total = 0) {
    if (x === 0) {
        return running_total;
    } else {
        return tailrecsum(x - 1, running_total + x);
    }
}

以下是调用tailrecsum(5)时发生的事件序列(由于默认的第二个参数,它实际上是tailrecsum(5,0))。

tailrecsum(5, 0)
tailrecsum(4, 5)
tailrecsum(3, 9)
tailrecsum(2, 12)
tailrecsum(1, 14)
tailrecsum(0, 15)
15

在尾部递归情况下,每次对递归调用求值时,running_total都会更新。

注:原始答案使用了Python中的示例。由于Python解释器不支持尾部调用优化,这些代码已更改为JavaScript。然而,虽然尾部调用优化是ECMAScript 2015规范的一部分,但大多数JavaScript解释器不支持它。


这意味着不需要将指令指针推到堆栈上,只需跳到递归函数的顶部并继续执行即可。这允许函数无限递归而不会溢出堆栈。

我写了一篇关于这个主题的博客文章,里面有堆栈框架的图形示例。


递归意味着函数调用自身。例如:

(define (un-ended name)
  (un-ended 'me)
  (print "How can I get here?"))

尾部递归是指结束函数的递归:

(define (un-ended name)
  (print "hello")
  (un-ended 'me))

看,非终结函数(Scheme术语中的过程)做的最后一件事就是调用自己。另一个(更有用的)例子是:

(define (map lst op)
  (define (helper done left)
    (if (nil? left)
        done
        (helper (cons (op (car left))
                      done)
                (cdr left))))
  (reverse (helper '() lst)))

在helper过程中,如果左边不是nil,最后一件事就是调用自己(AFTER cons something和cdr something)。这基本上就是如何映射列表的。

尾部递归有一个很大的优点,即解释器(或编译器,取决于语言和供应商)可以对其进行优化,并将其转换为相当于while循环的东西。事实上,在Scheme传统中,大多数“for”和“while”循环都是以尾部递归的方式完成的(据我所知,没有for和while)。


这里是前面提到的tailrecsum函数的Perl 5版本。

sub tail_rec_sum($;$){
  my( $x,$running_total ) = (@_,0);

  return $running_total unless $x;

  @_ = ($x-1,$running_total+$x);
  goto &tail_rec_sum; # throw away current stack frame
}

在Java中,以下是斐波那契函数的一个可能的尾部递归实现:

public int tailRecursive(final int n) {
    if (n <= 2)
        return 1;
    return tailRecursiveAux(n, 1, 1);
}

private int tailRecursiveAux(int n, int iter, int acc) {
    if (iter == n)
        return acc;
    return tailRecursiveAux(n, ++iter, acc + iter);
}

与标准递归实现形成对比:

public int recursive(final int n) {
    if (n <= 2)
        return 1;
    return recursive(n - 1) + recursive(n - 2);
}

下面是比较两个函数的快速代码片段。第一种是传统的递归,用于求给定数的阶乘。第二种使用尾部递归。

理解起来非常简单直观。

判断递归函数是否为尾部递归函数的一种简单方法是,它是否在基本情况下返回具体值。这意味着它不会返回1或true或类似的值。它很可能会返回某个方法参数的变体。

另一种方法是判断递归调用是否没有任何加法、算术、修改等。这意味着它只是一个纯递归调用。

public static int factorial(int mynumber) {
    if (mynumber == 1) {
        return 1;
    } else {            
        return mynumber * factorial(--mynumber);
    }
}

public static int tail_factorial(int mynumber, int sofar) {
    if (mynumber == 1) {
        return sofar;
    } else {
        return tail_factorial(--mynumber, sofar * mynumber);
    }
}

下面是一个使用尾部递归进行阶乘的常见Lisp示例。由于无堆栈的性质,人们可以进行疯狂的大型阶乘计算。。。

(defun ! (n &optional (product 1))
    (if (zerop n) product
        (! (1- n) (* product n))))

然后为了好玩,你可以尝试(格式化nil“~R”(!25))


为了理解尾部调用递归和非尾部调用递归之间的一些核心区别,我们可以探索这些技术的.NET实现。

这是一篇包含C#、F#和C++\CLI中的一些示例的文章:C#、F#和C++/CLI中的尾部递归冒险。

C#没有针对尾部调用递归进行优化,而F#进行了优化。

原理的差异涉及循环与Lambda演算。C#的设计考虑到了循环,而F#是基于Lambda演算的原理构建的。有关Lambda微积分原理的一本非常好(免费)的书,请参阅Abelson、Sussman和Sussman的《计算机程序的结构和解释》。

关于F#中的尾部调用,有关非常好的介绍性文章,请参阅F#中尾部调用的详细介绍。最后,这里有一篇文章介绍了非尾部递归和尾部调用递归(在F#中)之间的区别:尾部递归与F sharp中的非尾部递归。

如果您想了解C#和F#之间尾部调用递归的一些设计差异,请参阅在C#和F#中生成尾部调用操作码。

如果您非常想知道哪些条件阻止C#编译器执行尾部调用优化,请参阅本文:JIT CLR尾部调用条件。


对我来说,理解尾调用递归的最好方法是递归的一种特殊情况,其中最后一个调用(或尾调用)是函数本身。

比较Python中提供的示例:

def recsum(x):
 if x == 1:
  return x
 else:
  return x + recsum(x - 1)

^递归

def tailrecsum(x, running_total=0):
  if x == 0:
    return running_total
  else:
    return tailrecsum(x - 1, running_total + x)

^尾部递归

正如您在常规递归版本中看到的,代码块中的最后一个调用是x+recsum(x-1)。所以在调用recsum方法之后,还有一个操作是x+。。。

然而,在尾部递归版本中,代码块中的最后一个调用(或尾部调用)是tailrecsum(x-1,running_total+x),这意味着最后一次调用是对方法本身进行的,之后不再进行操作。

这一点很重要,因为这里看到的尾部递归不会使内存增长,因为当底层VM看到一个函数在尾部位置(函数中要计算的最后一个表达式)调用自己时,它会消除当前堆栈帧,这就是所谓的尾部调用优化(TCO)。

EDIT

没有。请记住,上面的示例是用Python编写的,其运行时不支持TCO。这只是一个解释这一点的例子。在Scheme、Haskell等语言中支持TCO


这是《计算机程序的结构和解释》中关于尾部递归的摘录。

在对比迭代和递归时,我们必须小心不要将递归过程的概念与递归过程。当我们将过程描述为递归时指过程定义所指的句法事实(直接或间接)到程序本身。但当我们将过程描述为遵循一种模式,即线性递归,我们谈论的是过程如何演变,而不是如何编写过程的语法。这似乎令人不安我们将递归过程(如事实iter)称为生成迭代过程。然而,这个过程实际上是迭代的:它的状态被其三个状态变量完全捕获解释器只需要跟踪三个变量执行该过程。过程和程序之间的区别可能是令人困惑的是,大多数通用语言的实现(包括Ada、Pascal和C) 以这样一种方式设计过程消耗的内存量会随着过程调用,迭代。因此,这些语言可以描述迭代仅通过使用专用的“循环构造”来处理例如do、repeat、until、for和while。实施方案不具有此缺陷。它将在恒定空间中执行迭代过程,即使迭代过程由递归过程描述。一具有此属性的实现称为尾部递归。用一个尾部递归实现,可以使用普通过程调用机制,使特殊迭代构造只作为句法糖有用。


简而言之,尾部递归将递归调用作为函数中的最后一条语句,这样就不必等待递归调用。

所以这是一个尾部递归,即N(x-1,p*x)是函数中的最后一个语句,编译器聪明地发现它可以优化为for循环(阶乘)。第二个参数p携带中间乘积值。

function N(x, p) {
   return x == 1 ? p : N(x - 1, p * x);
}

这是编写上述阶乘函数的非尾部递归方式(尽管某些C++编译器可能无论如何都能优化它)。

function N(x) {
   return x == 1 ? 1 : x * N(x - 1);
}

但这不是:

function F(x) {
  if (x == 1) return 0;
  if (x == 2) return 1;
  return F(x - 1) + F(x - 2);
}

我确实写了一篇题为“理解尾部递归——Visual Studio C++——汇编视图”的长文


尾部递归是你现在的生活。您不断重复使用相同的堆栈帧,因为没有理由或方法返回到“先前”帧。过去已经结束,可以抛弃。你得到一帧,永远走向未来,直到你的过程不可避免地消亡。

当您考虑到某些进程可能会使用额外的帧,但如果堆栈没有无限增长,则仍然被认为是尾部递归时,这种类比就失败了。


这个问题有很多很好的答案。。。但我忍不住提出了另一种看法,即如何定义“尾部递归”,或者至少是“正确的尾部递归”。即:是否应该将其视为程序中特定表达式的属性?还是应该将其视为编程语言实现的属性?

关于后一种观点,Will Clinger的一篇经典论文“正确的尾部递归和空间效率”(PLDI 1998)将“正确的尾递归”定义为编程语言实现的属性。该定义被构造为允许忽略实现细节(例如调用堆栈实际上是通过运行时堆栈还是通过堆分配的帧链接列表表示的)。

为了实现这一点,它使用了渐近分析:不是人们通常看到的程序执行时间,而是程序空间使用情况。这样,堆分配的链接列表与运行时调用堆栈的空间使用最终是渐近等价的;因此,人们会忽略编程语言实现的细节(这一细节在实践中当然非常重要,但当试图确定给定的实现是否满足“属性尾部递归”的要求时,可能会让事情变得一团糟)

该论文值得仔细研究,原因如下:

它给出了程序尾部表达式和尾部调用的归纳定义。(这样的定义,以及为什么这样的电话很重要,似乎是这里给出的大多数其他答案的主题。)以下是这些定义,只是为了提供文本的味道:定义1以核心方案编写的程序的尾部表达式归纳如下。lambda表达式的主体是尾部表达式如果(如果E0 E1 E2)是尾部表达式,则E1和E2都是尾部表达式。其他的都不是尾部表达式。定义2尾部调用是作为过程调用的尾部表达式。

(尾部递归调用,或者正如论文所说,“self-tail调用”是尾部调用的一种特殊情况,其中过程本身被调用。)

它为评估核心方案的六个不同“机器”提供了正式定义,其中每个机器都具有相同的可观察行为,除了每个机器所处的渐近空间复杂性类。例如,在为分别为1。基于堆栈的内存管理,2。垃圾收集,但没有尾部调用。垃圾收集和尾部调用,本文继续介绍更高级的存储管理策略,如4。“evlis尾部递归”,在尾部调用的最后一个子表达式参数求值期间不需要保存环境,5。将闭包的环境减少到该闭包的自由变量,以及6。Appel和Shao定义的所谓“空间安全”语义。为了证明这些机器实际上属于六个不同的空间复杂性类,本文针对每对被比较的机器,提供了程序的具体示例,这些程序将揭示一台机器上的渐近空间爆炸,而不是另一台机器。


(现在仔细阅读我的答案,我不确定我是否真的抓住了克林格论文的关键点。但是,唉,我现在不能花更多的时间来研究这个答案。)


尾部递归是函数调用的递归函数自身位于函数的末尾(“尾部”),其中没有计算在递归调用返回后完成。许多编译器优化以将递归调用更改为尾部递归调用或迭代调用。

考虑计算一个数的阶乘的问题。

一种简单的方法是:

  factorial(n):

    if n==0 then 1

    else n*factorial(n-1)

假设你调用阶乘(4)。递归树为:

       factorial(4)
       /        \
      4      factorial(3)
     /             \
    3          factorial(2)
   /                  \
  2                factorial(1)
 /                       \
1                       factorial(0)
                            \
                             1    

上述情况下的最大递归深度为O(n)。

但是,请考虑以下示例:

factAux(m,n):
if n==0  then m;
else     factAux(m*n,n-1);

factTail(n):
   return factAux(1,n);

factTail(4)的递归树为:

factTail(4)
   |
factAux(1,4)
   |
factAux(4,3)
   |
factAux(12,2)
   |
factAux(24,1)
   |
factAux(24,0)
   |
  24

这里,最大递归深度是O(n),但没有一个调用向堆栈添加任何额外变量。因此编译器可以取消堆栈。


递归有两种基本类型:头部递归和尾部递归。

在头部递归中,函数进行递归调用,然后执行更多计算,可能使用例如递归调用。在尾部递归函数中,所有计算首先发生递归调用是最后发生的事情。

摘自这篇超棒的帖子。请考虑阅读它。


许多人已经在这里解释了递归。我想引用Riccardo Terrell的《.NET中的并发性,并发和并行编程的现代模式》一书中关于递归的一些优点的一些想法:

“函数递归是FP中迭代的自然方式,因为它避免状态突变。在每次迭代期间,都会传递一个新值而不是被更新(变异)。在里面此外,可以编写递归函数,使您的程序更加模块化,并引入了开发机会并行化。"

以下是同一本书中关于尾部递归的一些有趣注释:

尾部调用递归是一种转换规则递归的技术函数转换为可处理大型输入的优化版本没有任何风险和副作用。注:尾部调用作为优化的主要原因是提高数据位置、内存使用率和缓存使用率。通过做尾巴调用时,被调用者使用与调用者相同的堆栈空间。这减少了记忆压力。它略微改善了缓存,因为存储器被后续调用方重用,并且可以留在缓存中,而不是驱逐旧的缓存线,为新的缓存腾出空间线


递归函数是一个自己调用的函数

它允许程序员用最少的代码编写高效的程序。

缺点是,如果编写不当,它们可能会导致无限循环和其他意外结果。

我将解释简单递归函数和尾部递归函数

为了编写简单的递归函数

首先要考虑的一点是你应该什么时候决定出来是if循环的第二个问题是,如果我们是自己的职能部门,我们应该做什么

从给定的示例中:

public static int fact(int n){
  if(n <=1)
     return 1;
  else 
     return n * fact(n-1);
}

从上面的例子中

if(n <=1)
     return 1;

是何时退出循环的决定因素

else 
     return n * fact(n-1);

是否要进行实际处理

为了便于理解,让我逐一完成任务。

让我们看看如果我运行事实(4),内部会发生什么

替换n=4

public static int fact(4){
  if(4 <=1)
     return 1;
  else 
     return 4 * fact(4-1);
}

如果循环失败,则转到else循环因此它返回4*事实(3)

在堆栈内存中,我们有4*事实(3)替换n=3

public static int fact(3){
  if(3 <=1)
     return 1;
  else 
     return 3 * fact(3-1);
}

如果循环失败,则转到else循环

因此它返回3*事实(2)

记住我们称之为“4*事实”(3)``

事实(3)的输出=3*事实(2)

到目前为止,堆栈具有4*事实(3)=4*3*事实(2)

在堆栈内存中,我们有4*3*事实(2)替换n=2

public static int fact(2){
  if(2 <=1)
     return 1;
  else 
     return 2 * fact(2-1);
}

如果循环失败,则转到else循环

因此它返回2*事实(1)

记住我们称之为4*3*事实(2)

事实(2)的输出=2*事实(1)

到目前为止,堆栈具有4*3*事实(2)=4*3*2*事实(1)

在堆栈内存中,我们有4*3*2*事实(1)替换n=1

public static int fact(1){
  if(1 <=1)
     return 1;
  else 
     return 1 * fact(1-1);
}

如果循环为真

所以它返回1

记住我们称之为4*3*2*事实(1)

事实(1)的输出=1

到目前为止,堆栈具有4*3*2*事实(1)=4*3*2*1

最后,事实(4)的结果=4*3*2*1=24

尾部递归将是

public static int fact(x, running_total=1) {
    if (x==1) {
        return running_total;
    } else {
        return fact(x-1, running_total*x);
    }
}

替换n=4

public static int fact(4, running_total=1) {
    if (x==1) {
        return running_total;
    } else {
        return fact(4-1, running_total*4);
    }
}

如果循环失败,则转到else循环因此它返回事实(3,4)

在堆栈内存中,我们有事实(3,4)替换n=3

public static int fact(3, running_total=4) {
    if (x==1) {
        return running_total;
    } else {
        return fact(3-1, 4*3);
    }
}

如果循环失败,则转到else循环

因此它返回事实(2,12)

在堆栈内存中,我们有事实(2,12)替换n=2

public static int fact(2, running_total=12) {
    if (x==1) {
        return running_total;
    } else {
        return fact(2-1, 12*2);
    }
}

如果循环失败,则转到else循环

因此它返回事实(1,24)

在堆栈内存中,我们有事实(1,24)替换n=1

public static int fact(1, running_total=24) {
    if (x==1) {
        return running_total;
    } else {
        return fact(1-1, 24*1);
    }
}

如果循环为真

因此它返回running_total

running_total=24的输出

最后,事实(4,1)的结果=24


尾部递归函数是一个递归函数,它在返回之前执行的最后一个操作是调用递归函数。也就是说,递归函数调用的返回值将立即返回。例如,您的代码如下所示:

def recursiveFunction(some_params):
    # some code here
    return recursiveFunction(some_args)
    # no code after the return statement

实现尾部调用优化或尾部调用消除的编译器和解释器可以优化递归代码以防止堆栈溢出。如果您的编译器或解释器没有实现尾部调用优化(例如CPython解释器),那么用这种方式编写代码不会有额外的好处。

例如,这是Python中的标准递归阶乘函数:

def factorial(number):
    if number == 1:
        # BASE CASE
        return 1
    else:
        # RECURSIVE CASE
        # Note that `number *` happens *after* the recursive call.
        # This means that this is *not* tail call recursion.
        return number * factorial(number - 1)

这是阶乘函数的尾调用递归版本:

def factorial(number, accumulator=1):
    if number == 0:
        # BASE CASE
        return accumulator
    else:
        # RECURSIVE CASE
        # There's no code after the recursive call.
        # This is tail call recursion:
        return factorial(number - 1, number * accumulator)
print(factorial(5))

(请注意,即使这是Python代码,CPython解释器也不会进行尾部调用优化,因此这样安排代码不会带来运行时的好处。)

您可能需要使代码更不可读,才能利用尾部调用优化,如阶乘示例所示。(例如,基本情况现在有点不直观,累加器参数被有效地用作一种全局变量。)

但尾部调用优化的好处是它可以防止堆栈溢出错误。(我会注意到,通过使用迭代算法而不是递归算法,您可以获得同样的好处。)

当调用堆栈推送了太多帧对象时,会导致堆栈溢出。当调用函数时,框架对象被推到调用堆栈上,当函数返回时,框架将从调用堆栈中弹出。框架对象包含诸如局部变量以及函数返回时要返回的代码行之类的信息。

如果递归函数进行了太多递归调用而没有返回,则调用堆栈可能会超出其帧对象限制。(数量因平台而异;在Python中默认为1000个帧对象。)这会导致堆栈溢出错误。(嘿,这就是这个网站的名字来源!)

但是,如果递归函数做的最后一件事是进行递归调用并返回其返回值,那么它就没有理由保持当前帧对象需要停留在调用堆栈上。毕竟,如果递归函数调用后没有代码,就没有理由挂起当前帧对象的局部变量。因此,我们可以立即删除当前帧对象,而不是将其保留在调用堆栈中。这样做的最终结果是,调用堆栈的大小不会增加,因此不会出现堆栈溢出。

编译器或解释器必须具有尾部调用优化功能,以便能够识别何时可以应用尾部调用优化。即使如此,您可能已经重新排列了递归函数中的代码,以利用尾部调用优化,这取决于您是否值得优化可读性的潜在降低。


与普通递归相比,尾部递归非常快。它很快,因为祖先调用的输出不会写入堆栈以保持跟踪。但在正常递归中,所有祖先调用堆栈中的输出以保持跟踪。


如果每个递归情况仅由对函数本身的调用组成,并且可能具有不同的参数,则函数是尾部递归的。或者,尾部递归是没有待定工作的递归。注意,这是一个与编程语言无关的概念。

考虑定义如下的函数:

g(a, b, n) = a * b^n

一种可能的尾部递归公式是:

g(a, b, n) | n is zero = a
           | n is odd  = g(a*b, b,   n-1)
           | otherwise = g(a,   b*b, n/2)

如果您检查g(…)的每一个涉及递归情况的RHS,您会发现整个RHS都是对g(……)的调用,仅此而已。这个定义是尾部递归的。

作为比较,非尾部递归公式可能是:

g'(a, b, n) = a * f(b, n)
f(b, n) | n is zero = 1
        | n is odd  = f(b, n-1) * b
        | otherwise = f(b, n/2) ^ 2

f(…)中的每个递归情况都有一些需要在递归调用之后进行的未决工作。

注意,当我们从“g”到“g”时,我们充分利用了关联性(和交换性)乘法。这并不是偶然的,在大多数需要将递归转换为尾递归的情况下,都会利用这些财产:如果我们想急切地做一些工作,而不是让它等待,我们必须使用关联性之类的东西来证明答案是一样的。

尾部递归调用可以通过向后跳转来实现,而不是使用堆栈进行常规递归调用。注意,检测尾部呼叫或发出向后跳转通常很简单。然而,通常很难重新排列参数,以便向后跳转。由于此优化不是免费的,语言实现可以选择不实现此优化,或者通过使用“tailcall”指令标记递归调用和/或选择更高的优化设置来要求选择加入。

然而,某些语言(例如Scheme)确实需要所有实现来优化尾部递归函数,甚至可能需要所有尾部位置的调用。

在大多数命令式语言中,向后跳转通常被抽象为(while)循环,而尾部递归在优化为向后跳转时,与循环同构。


尾部递归函数是一个递归函数,其中递归调用是函数中最后执行的事情。

常规递归函数,我们有堆栈,每次调用递归函数中的递归函数时,都会向调用堆栈添加另一层。在正常递归中空间:O(n)尾递归使空间复杂性从

O(N)=>O(1)

尾部调用优化意味着可以从另一个函数调用函数,而不增加调用堆栈。我们应该在递归解中编写尾部递归。但某些语言实际上不支持其引擎中的尾部递归,该引擎将语言向下编译。自从ecma6以来,规范中就有了尾部递归。但编译js的引擎都没有实现尾部递归。你无法在js中实现O(1),因为编译器本身不知道如何实现这种尾部递归。截至2020年1月1日,Safari是唯一支持尾部呼叫优化的浏览器。Haskell和Java具有尾部递归优化

正则递归阶乘

function Factorial(x) {
  //Base case x<=1
  if (x <= 1) {
    return 1;
  } else {
    // x is waiting for the return value of Factorial(x-1)
    // the last thing we do is NOT applying the recursive call
    // after recursive call we still have to multiply.
    return x * Factorial(x - 1);
  }
}

我们的调用堆栈中有4个调用。

Factorial(4); // waiting in the memory for Factorial(3)
4 * Factorial(3); //  waiting in the memory for Factorial(2)
4 * (3 * Factorial(2)); //  waiting in the memory for Factorial(1)
4 * (3 * (2 * Factorial(1)));
4 * (3 * (2 * 1));

我们正在进行4次Factorial()调用,空间为O(n)这可能会导致堆栈溢出

尾部递归因子

function tailFactorial(x, totalSoFar = 1) {
  //Base Case: x===0. In recursion there must be base case. Otherwise they will never stop
  if (x === 0) {
    return totalSoFar;
  } else {
    // there is nothing waiting for tailFactorial to complete. we are returning another instance of tailFactorial()
    // we are not doing any additional computaion with what we get back from this recursive call
    return tailFactorial(x - 1, totalSoFar * x);
  }
}

在进行递归调用后,我们不需要记住任何内容