当我开始学习口齿不清时,我遇到了“尾部递归”这个词。这到底是什么意思?
当前回答
与普通递归相比,尾部递归非常快。它很快,因为祖先调用的输出不会写入堆栈以保持跟踪。但在正常递归中,所有祖先调用堆栈中的输出以保持跟踪。
其他回答
这个问题有很多很好的答案。。。但我忍不住提出了另一种看法,即如何定义“尾部递归”,或者至少是“正确的尾部递归”。即:是否应该将其视为程序中特定表达式的属性?还是应该将其视为编程语言实现的属性?
关于后一种观点,Will Clinger的一篇经典论文“正确的尾部递归和空间效率”(PLDI 1998)将“正确的尾递归”定义为编程语言实现的属性。该定义被构造为允许忽略实现细节(例如调用堆栈实际上是通过运行时堆栈还是通过堆分配的帧链接列表表示的)。
为了实现这一点,它使用了渐近分析:不是人们通常看到的程序执行时间,而是程序空间使用情况。这样,堆分配的链接列表与运行时调用堆栈的空间使用最终是渐近等价的;因此,人们会忽略编程语言实现的细节(这一细节在实践中当然非常重要,但当试图确定给定的实现是否满足“属性尾部递归”的要求时,可能会让事情变得一团糟)
该论文值得仔细研究,原因如下:
它给出了程序尾部表达式和尾部调用的归纳定义。(这样的定义,以及为什么这样的电话很重要,似乎是这里给出的大多数其他答案的主题。)以下是这些定义,只是为了提供文本的味道:定义1以核心方案编写的程序的尾部表达式归纳如下。lambda表达式的主体是尾部表达式如果(如果E0 E1 E2)是尾部表达式,则E1和E2都是尾部表达式。其他的都不是尾部表达式。定义2尾部调用是作为过程调用的尾部表达式。
(尾部递归调用,或者正如论文所说,“self-tail调用”是尾部调用的一种特殊情况,其中过程本身被调用。)
它为评估核心方案的六个不同“机器”提供了正式定义,其中每个机器都具有相同的可观察行为,除了每个机器所处的渐近空间复杂性类。例如,在为分别为1。基于堆栈的内存管理,2。垃圾收集,但没有尾部调用。垃圾收集和尾部调用,本文继续介绍更高级的存储管理策略,如4。“evlis尾部递归”,在尾部调用的最后一个子表达式参数求值期间不需要保存环境,5。将闭包的环境减少到该闭包的自由变量,以及6。Appel和Shao定义的所谓“空间安全”语义。为了证明这些机器实际上属于六个不同的空间复杂性类,本文针对每对被比较的机器,提供了程序的具体示例,这些程序将揭示一台机器上的渐近空间爆炸,而不是另一台机器。
(现在仔细阅读我的答案,我不确定我是否真的抓住了克林格论文的关键点。但是,唉,我现在不能花更多的时间来研究这个答案。)
尾部递归函数是一个递归函数,它在返回之前执行的最后一个操作是调用递归函数。也就是说,递归函数调用的返回值将立即返回。例如,您的代码如下所示:
def recursiveFunction(some_params):
# some code here
return recursiveFunction(some_args)
# no code after the return statement
实现尾部调用优化或尾部调用消除的编译器和解释器可以优化递归代码以防止堆栈溢出。如果您的编译器或解释器没有实现尾部调用优化(例如CPython解释器),那么用这种方式编写代码不会有额外的好处。
例如,这是Python中的标准递归阶乘函数:
def factorial(number):
if number == 1:
# BASE CASE
return 1
else:
# RECURSIVE CASE
# Note that `number *` happens *after* the recursive call.
# This means that this is *not* tail call recursion.
return number * factorial(number - 1)
这是阶乘函数的尾调用递归版本:
def factorial(number, accumulator=1):
if number == 0:
# BASE CASE
return accumulator
else:
# RECURSIVE CASE
# There's no code after the recursive call.
# This is tail call recursion:
return factorial(number - 1, number * accumulator)
print(factorial(5))
(请注意,即使这是Python代码,CPython解释器也不会进行尾部调用优化,因此这样安排代码不会带来运行时的好处。)
您可能需要使代码更不可读,才能利用尾部调用优化,如阶乘示例所示。(例如,基本情况现在有点不直观,累加器参数被有效地用作一种全局变量。)
但尾部调用优化的好处是它可以防止堆栈溢出错误。(我会注意到,通过使用迭代算法而不是递归算法,您可以获得同样的好处。)
当调用堆栈推送了太多帧对象时,会导致堆栈溢出。当调用函数时,框架对象被推到调用堆栈上,当函数返回时,框架将从调用堆栈中弹出。框架对象包含诸如局部变量以及函数返回时要返回的代码行之类的信息。
如果递归函数进行了太多递归调用而没有返回,则调用堆栈可能会超出其帧对象限制。(数量因平台而异;在Python中默认为1000个帧对象。)这会导致堆栈溢出错误。(嘿,这就是这个网站的名字来源!)
但是,如果递归函数做的最后一件事是进行递归调用并返回其返回值,那么它就没有理由保持当前帧对象需要停留在调用堆栈上。毕竟,如果递归函数调用后没有代码,就没有理由挂起当前帧对象的局部变量。因此,我们可以立即删除当前帧对象,而不是将其保留在调用堆栈中。这样做的最终结果是,调用堆栈的大小不会增加,因此不会出现堆栈溢出。
编译器或解释器必须具有尾部调用优化功能,以便能够识别何时可以应用尾部调用优化。即使如此,您可能已经重新排列了递归函数中的代码,以利用尾部调用优化,这取决于您是否值得优化可读性的潜在降低。
下面是比较两个函数的快速代码片段。第一种是传统的递归,用于求给定数的阶乘。第二种使用尾部递归。
理解起来非常简单直观。
判断递归函数是否为尾部递归函数的一种简单方法是,它是否在基本情况下返回具体值。这意味着它不会返回1或true或类似的值。它很可能会返回某个方法参数的变体。
另一种方法是判断递归调用是否没有任何加法、算术、修改等。这意味着它只是一个纯递归调用。
public static int factorial(int mynumber) {
if (mynumber == 1) {
return 1;
} else {
return mynumber * factorial(--mynumber);
}
}
public static int tail_factorial(int mynumber, int sofar) {
if (mynumber == 1) {
return sofar;
} else {
return tail_factorial(--mynumber, sofar * mynumber);
}
}
与普通递归相比,尾部递归非常快。它很快,因为祖先调用的输出不会写入堆栈以保持跟踪。但在正常递归中,所有祖先调用堆栈中的输出以保持跟踪。
尾部递归是指递归算法中最后一条逻辑指令中的最后一个递归调用。
通常在递归中,您有一个基本情况,即停止递归调用并开始弹出调用堆栈。使用一个经典的例子,尽管比Lisp更具C语言,阶乘函数说明了尾部递归。递归调用在检查基本情况条件后发生。
factorial(x, fac=1) {
if (x == 1)
return fac;
else
return factorial(x-1, x*fac);
}
对阶乘的初始调用将是阶乘(n),其中fac=1(默认值),n是要计算阶乘的数字。