当我开始学习口齿不清时,我遇到了“尾部递归”这个词。这到底是什么意思?
当前回答
下面是比较两个函数的快速代码片段。第一种是传统的递归,用于求给定数的阶乘。第二种使用尾部递归。
理解起来非常简单直观。
判断递归函数是否为尾部递归函数的一种简单方法是,它是否在基本情况下返回具体值。这意味着它不会返回1或true或类似的值。它很可能会返回某个方法参数的变体。
另一种方法是判断递归调用是否没有任何加法、算术、修改等。这意味着它只是一个纯递归调用。
public static int factorial(int mynumber) {
if (mynumber == 1) {
return 1;
} else {
return mynumber * factorial(--mynumber);
}
}
public static int tail_factorial(int mynumber, int sofar) {
if (mynumber == 1) {
return sofar;
} else {
return tail_factorial(--mynumber, sofar * mynumber);
}
}
其他回答
这意味着不需要将指令指针推到堆栈上,只需跳到递归函数的顶部并继续执行即可。这允许函数无限递归而不会溢出堆栈。
我写了一篇关于这个主题的博客文章,里面有堆栈框架的图形示例。
与普通递归相比,尾部递归非常快。它很快,因为祖先调用的输出不会写入堆栈以保持跟踪。但在正常递归中,所有祖先调用堆栈中的输出以保持跟踪。
尾部递归函数是一个递归函数,它在返回之前执行的最后一个操作是调用递归函数。也就是说,递归函数调用的返回值将立即返回。例如,您的代码如下所示:
def recursiveFunction(some_params):
# some code here
return recursiveFunction(some_args)
# no code after the return statement
实现尾部调用优化或尾部调用消除的编译器和解释器可以优化递归代码以防止堆栈溢出。如果您的编译器或解释器没有实现尾部调用优化(例如CPython解释器),那么用这种方式编写代码不会有额外的好处。
例如,这是Python中的标准递归阶乘函数:
def factorial(number):
if number == 1:
# BASE CASE
return 1
else:
# RECURSIVE CASE
# Note that `number *` happens *after* the recursive call.
# This means that this is *not* tail call recursion.
return number * factorial(number - 1)
这是阶乘函数的尾调用递归版本:
def factorial(number, accumulator=1):
if number == 0:
# BASE CASE
return accumulator
else:
# RECURSIVE CASE
# There's no code after the recursive call.
# This is tail call recursion:
return factorial(number - 1, number * accumulator)
print(factorial(5))
(请注意,即使这是Python代码,CPython解释器也不会进行尾部调用优化,因此这样安排代码不会带来运行时的好处。)
您可能需要使代码更不可读,才能利用尾部调用优化,如阶乘示例所示。(例如,基本情况现在有点不直观,累加器参数被有效地用作一种全局变量。)
但尾部调用优化的好处是它可以防止堆栈溢出错误。(我会注意到,通过使用迭代算法而不是递归算法,您可以获得同样的好处。)
当调用堆栈推送了太多帧对象时,会导致堆栈溢出。当调用函数时,框架对象被推到调用堆栈上,当函数返回时,框架将从调用堆栈中弹出。框架对象包含诸如局部变量以及函数返回时要返回的代码行之类的信息。
如果递归函数进行了太多递归调用而没有返回,则调用堆栈可能会超出其帧对象限制。(数量因平台而异;在Python中默认为1000个帧对象。)这会导致堆栈溢出错误。(嘿,这就是这个网站的名字来源!)
但是,如果递归函数做的最后一件事是进行递归调用并返回其返回值,那么它就没有理由保持当前帧对象需要停留在调用堆栈上。毕竟,如果递归函数调用后没有代码,就没有理由挂起当前帧对象的局部变量。因此,我们可以立即删除当前帧对象,而不是将其保留在调用堆栈中。这样做的最终结果是,调用堆栈的大小不会增加,因此不会出现堆栈溢出。
编译器或解释器必须具有尾部调用优化功能,以便能够识别何时可以应用尾部调用优化。即使如此,您可能已经重新排列了递归函数中的代码,以利用尾部调用优化,这取决于您是否值得优化可读性的潜在降低。
我不是Lisp程序员,但我认为这会有所帮助。
基本上,这是一种编程风格,递归调用是最后一件事。
简而言之,尾部递归将递归调用作为函数中的最后一条语句,这样就不必等待递归调用。
所以这是一个尾部递归,即N(x-1,p*x)是函数中的最后一个语句,编译器聪明地发现它可以优化为for循环(阶乘)。第二个参数p携带中间乘积值。
function N(x, p) {
return x == 1 ? p : N(x - 1, p * x);
}
这是编写上述阶乘函数的非尾部递归方式(尽管某些C++编译器可能无论如何都能优化它)。
function N(x) {
return x == 1 ? 1 : x * N(x - 1);
}
但这不是:
function F(x) {
if (x == 1) return 0;
if (x == 2) return 1;
return F(x - 1) + F(x - 2);
}
我确实写了一篇题为“理解尾部递归——Visual Studio C++——汇编视图”的长文
推荐文章
- 有效的方法应用多个过滤器的熊猫数据框架或系列
- 什么是ORM,它是如何工作的,我应该如何使用它?
- 我能在服务器端应用程序(PHP、Ruby、Python等)上读取URL的哈希部分吗?
- 多少个参数是太多?
- 对于没有null的语言的最佳解释
- Python:为什么functools。部分有必要吗?
- 哪些是遗传算法/遗传规划解决方案的好例子?
- 如何在O(n)中找到长度为n的无序数组中的第k大元素?
- 匿名递归PHP函数
- 一个用于膨胀/收缩(抵消,缓冲)多边形的算法
- 我如何使用Node.js Crypto创建HMAC-SHA1哈希?
- 对于不可变集合上的非突变“add”方法,最好的名称是什么?
- 如何用动态规划确定最长递增子序列?
- 在c++程序中以编程方式检测字节序
- 理解递归